It is well known that polynomials are dense in thecontinuous functions, so that given a continuous function, a uniformlyconvergent sequence of polynomials exists. However, in choosing nodesto approximate functions, it often happens that one must choose thenodes before knowing the functions. So is there a sequence of nodessuch that, for any function, the interpolating polynomials uniformlyconverge to the function? Sadly, the answer is no. I will prove this,and also discuss various related results.