On Basis Constructions in Finite Element Exterior Calculus
Martin Licht
UCSD
Abstract:
We give a systematic and self-contained account of the construction of
geometrically decomposed bases and degrees of freedom in finite element
exterior calculus. In particular, we elaborate upon a previously overlooked
basis for one of the families of finite element spaces, which is of interest
for implementations. Moreover, we give details for the construction of
isomorphisms and duality pairings between finite element spaces. These
structural results show, for example, how to transfer linear dependencies
between canonical spanning sets, or give a new derivation of the degrees of
freedom.