[Home]   [  News]   [  Events]   [  People]   [  Research]   [  Education]   [Visitor Info]   [UCSD Only]   [Admin]
Home > Events > CCoM > Abstract
Search this site:

Polynomial Optimization Relaxations for Generalized Semi-Infinite Programming

Xiaomeng Hu
UCSD

Abstract:

We study generalized semi-infinite programs (GSIPs) given by polynomials. We propose a hierarchy of polynomial optimization relaxations to solve them. They are based on Lagrange multiplier expressions and polynomial extensions. Moment-SOS relaxations are applied to solve the polynomial optimization. The convergence of this hierarchy is shown under certain conditions. In particular, the classical semi-infinite programs (SIPs) can be solved as a special case of GSIPs. We also study GSIPs that have convex infinity constraints and show that they can be solved exactly by a single polynomial optimization relaxation. The computational efficiency is demonstrated by extensive numerical results.

Tuesday, April 11, 2023
11:00AM AP&M 2402