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Abstract. In this article, we examine the wavelet modified (or stabilized) hierarchical basis
(WHB) methods of Vassilevski and Wang, and extend their original quasiuniformity-based framework
and results to local 2D and 3D red-green refinement procedures. The concept of a stable Riesz
basis plays a critical role in the original work on WHB, and in the design of efficient multilevel
preconditioners in general. We carefully examine the impact of local mesh refinement on Riesz bases
and matrix conditioning. In the analysis of WHB methods, a critical first step is to establish that the
BPX preconditioner is optimal for the refinement procedures under consideration. Therefore, the first
article in this series was devoted to extending the results of Dahmen and Kunoth on the optimality
of BPX for 2D local red-green refinement to 3D local red-green refinement procedures introduced by
Bornemann-Erdmann-Kornhuber (BEK). These results from the first article, together with the local
refinement extension of the WHB analysis framework presented here, allow us to establish optimality
of the WHB preconditioner on locally refined meshes in both 2D and 3D. In particular, with the
minimal smoothness assumption that the PDE coefficients are in Lo, we establish optimality for the
additive WHB preconditioner on locally refined 2D and 3D meshes. An interesting implication of the
optimality of WHB preconditioner is the a priori H!-stability of the La-projection. The existing a
posteriori approaches in the literature dictate a reconstruction of the mesh if such conditions cannot
be satisfied. The proof techniques employed throughout the paper allow extension of the optimality
results, the H!-stability of Las-projection results, and the various supporting results to arbitrary
spatial dimension d > 1.
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wavelets, two and three dimensions, local mesh refinement, red-green refinement.

AMS subject classifications. 65M55, 656N55, 65N22, 65F10

1. Introduction. In this article, we analyze the impact of local adaptive mesh
refinement on the stability of multilevel finite element spaces and on the optimality
(linear space and time complexity) of multilevel preconditioners. Adaptive refine-
ment techniques have become a crucial tool for many applications, and access to
optimal or near-optimal multilevel preconditioners for locally refined mesh situations
is of primary concern to computational scientists. The preconditioners which can
be expected to have somewhat favorable space and time complexity in such local
refinement scenarios are the hierarchical basis (HB) method, the Bramble-Pasciak-
Xu (BPX) preconditioner, and the wavelet modified (or stabilized) hierarchical basis
(WHB) method. While there are optimality results for both the BPX and WHB pre-
conditioners in the literature, these are primarily for quasiuniform meshes and/or two
space dimensions (with some exceptions noted below). In particular, there are few
hard results in the literature on the optimality of these methods for various realistic
local mesh refinement hierarchies, especially in three space dimensions. We assemble
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a number of such results in this article, which is the second in a series of three ar-
ticles [2, 3] on local refinement and multilevel preconditioners (the material forming
this trilogy is based on the first author’s Ph.D. dissertation [1]). This second article
focuses on the WHB methods; the first article [3] developed some results for the BPX
preconditioner.

The problem class we focus on here is linear second order partial differential
equations (PDE) of the form:

~V-(pVu)+qu=f, uecH}Q). (1.1)

Here, f € L2(Q), p,q € Loo(Q), p: @ — L(RYRY), g : Q — R, where p is a symmetric
positive definite matrix function, and where ¢ is a nonnegative function. Let 73 be
a shape regular and quasiuniform initial partition of ) into a finite number of d
simplices, and generate 77,75, ... by refining the initial partition using the standard
red-green refinement procedure in d = 2 or d = 3 spatial dimensions. The local
2D red-green refinement of interest is as described in [10], whereas the 3D version
of interest is as described by Bornemann-Erdmann-Kornhuber [7]. Denote as S;
the simplicial linear C° finite element space corresponding to 7; equipped with zero

boundary values. The set of nodal basis functions for S; is denoted by (/) = {(bgj ) }Z\/:]l
where N; = dim S; is equal to the number of interior nodes in 7;. Successively refined
finite element spaces will form the following nested sequence:

SHCS C...CS;C...C H(Q). (1.2)

Let the bilinear form and the functional associated with the weak formulation
of (1.1) be denoted as

a(u,v):/qu-Vv—i—quvdx, b(v):/fvda:, u,v € Hy (Q).
Q Q

We consider primarily the following Galerkin formulation: Find u € S;, such that

a(u,v) =b(v), YveS;. (1.3)
The finite element approximation in S; has the form u() = ZZV:JI uiqbgj), where u =
(ug, ... 7uNj)T denotes the coefficients of ul?) with respect to ®U). The resulting
discretization operator AU) = {a((b,(j ), l(] ))},ivizl determines the interaction of basis
functions with respect to a(-,-) and must be inverted numerically to determine the
coefficients u from the linear system:

AWy = FO) (1.4)

where FU) = {b(gi)lm)}fv:jl. Our task is to solve (1.4) with optimal (linear) complexity
in both storage and computation, where the finite element spaces §; are built on
locally refined meshes.

HB methods are particularly attractive in the local refinement setting because
(by construction) each iteration has linear (optimal) computational and storage com-
plexity. Unfortunately, the resulting preconditioner is not optimal due to condition
number growth: in two dimensions the growth is slow, and the method is quite effec-
tive (nearly optimal), but in three dimensions the condition number grows much more
rapidly with the number of unknowns. To address this instability, one can employ
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Ls-orthonormal wavelets in place of the hierarchical basis; such wavelets form a stable
Riesz bases in H!, thereby giving rise to an optimal preconditioner [11]. However, the
complicated nature of traditional wavelet bases, in particular the non-local support
of the basis functions and problematic treatment of boundary conditions, severely
limits computational feasibility. WHB methods have been developed [21, 22] as an
alternative, and they can be interpreted as a wavelet modification (or stabilization)
of the hierarchical basis. These methods have been shown to optimally stabilize the
condition number of the systems arising from hierarchical basis methods on quasiu-
niform meshes in both two and three space dimensions, and retain a comparable cost
per iteration.

The framework developed in [21, 22] for the analysis of stabilizations of the hi-
erarchical basis on quasiuniform meshes relies on establishing an optimal BPX pre-
conditioner. In this article, we adopt the modern framework which exploits estimates
related to depth of the hierarchy rather than the element size (i.e. 277 versus h). This
framework enables the extension to the local refinement setting. To use the extended
framework, one again begins by establishing optimality of the BPX preconditioner,
but now for the particular local refinement procedures of interest.

Outline of the paper. In §2, we give a theoretical framework for constructing
optimal multilevel preconditioners through decompositions of finite element spaces.
There are two main players in this framework: the slice operator and the HB operator.
We outline the link between the two. In §3, we introduce the the WHB preconditioner
as well as the operator used in its definition. In §4, we review the relationship be-
tween condition numbers of matrices and stable Riesz bases. In §5, condition number
bounds for the HB and WHB preconditioners are given by establishing explicit Riesz
basis stability bounds, and we show that H!-stability of the slice operators m; is a
necessary condition for obtaining a H!-stable Riesz basis (or equivalently, an optimal
preconditioner). In §6, we briefly describe 3D red-green local refinement of two- and
three-dimensional simplex meshes, and list a number of critical geometrical results for
the resulting refined meshes that were established in [3]. In §7, we set up the main the-
oretical results in the paper, state the fundamental assumption for establishing basis
stability and WHB preconditioner optimality. We establish the main result, namely,
the optimality of the WHB preconditioner in the 2D and 3D local red-green refine-
ments. The optimality result is established for general PDE coefficients p € Lo ().
The results in §7 rest completely on the BPX results from the companion article [3]
and on Bernstein estimates, the latter of which rest on the geometrical results es-
tablished in §6. Appendix §9 is dedicated to showing that the fine-fine interaction
operator A;JQ) is well-conditioned.

Finally, we note that as optimality of the WHB preconditioner implies H'-
stability of the W; operator restricted to finite element spaces under the same class
of local refinement algorithms, likewise a surprising implication of the optimality of
the BPX preconditioner is H'-stability of Ls-projection. This question has been ac-
tively studied in the finite element community due to its relationship to multilevel
preconditioning. The existing theoretical results, mainly due to Carstensen [9] and
Bramble-Pasciak-Steinbach [8] involve a posteriori verification of somewhat compli-
cated mesh conditions after refinement has taken place. If such mesh conditions are
not satisfied, one has to redefine the mesh. However, the stability result we obtain
in §5.1 appears to be the first a priori H'-stability result for Lo-projection on the
finite element spaces produced.
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2. Multilevel preconditioning framework. The primary goal of this work
is to describe an approximation theory framework for constructing and analyzing
multilevel preconditioners, and then to use the framework to show that the WHB
preconditioner is optimal for 2D and 3D local red-green refinement procedures. Mul-
tilevel preconditioning exploits the underlying multilevel hierarchical structure. Let
J\/jf denote the newly introduced (fine) nodes in a locally refined mesh, then the
following decomposition at level j is naturally introduced:

Nj =N UN]. (2.1)

The key point is to reflect the hierarchical ordering of nodes (2.1) in the corresponding
nodal basis functions, thereby reaching a hierarchical splitting:

Sj=81®8], (2.2)

where S]f is called a slice space (superscript f stands for fine and later ¢ will stand for
coarse). The two-level decomposition is central to HB methods [5]. In this process
the slice space S ]f is selected as a hierarchical complement of §;_; in §;. Namely,

8! = (mj —m1)S; (2.3)

J

where 7; : Ly — S; is a linear operator with the following three properties:

5 |3j =1, (2.4)
TjTk = Tmin{j,k}> 2.5
I(m; = mj—)uD |z, = JuD|z,, w9 € (I - L;1)S;, (2.6)

where I; : Ly(©2) — S; denotes the finite element interpolation operator. Here, we
should clarify that by stable splitting, we mean that the bounds in the corresponding
norm equivalence (2.16) are favorable, in the best case, optimal [16, 17].

Since the decomposition §; = S;_; @ij in (2.2) is direct, AU) can be represented
by a two-by-two block form:

. AG-D A0 T Y s
AV = , 12 I (2.7)
AR Ay |}

where AU~ A%)7 Agjl)7 and Agjg) correspond to coarse-coarse, coarse-fine, fine-coarse,
and fine-fine interactions respectively. Applying the two-level decomposition (2.2) may
not give a stable splitting of ;. This means that AU~ may not be well-conditioned.
This difficulty can be overcome by repeating the above procedure so that S; can be
represented completely by slice spaces:

S=8=8 a8 o..as. (2.8)

Such a splitting will turn out not only to be stable, but as a consequence it will
also have the advantage of producing well-conditioned fine-fine interaction operators
Agé) as will be explained in §9. In light of (2.8), multilevel preconditioning can be
interpreted as a stable splitting of u € Sy with 7_1 =0,

J

u = Z(Trj — 7rj,1)u. (29)

Jj=0
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Following the exposition in the companion article [3], we can now define the
generic (additive) HB preconditioners

Hu —ZQJ(d DN (g, (2.10)

zENf

where ng) = (m; — 7Tj_1)(b§j). We can move to a general framework where (2.10)
becomes a special example. From this point on, the following operator will be referred
to as the HB preconditioner.

J

Bu:=Y B (m; —mj_1)u, (2.11)
=0

. 1
where Béé) : S]f — ij is the smoother (or an approximation to Aéé) ). Utilizing the

splitting (2.9), one can write u = Z'jjzo u@’ | where u¥)’ = (mj —mj—1)u. Note that

B can be written as a diagonal operator using (2.9):
1 —1 -1
B = diag(BYY w0, B (m1 —mo),.... B (wy — 1))
Using properties (2.4) and (2.5), one can observe that
. N —1 N f N f

B (m; —m;1)BE) (mj = mj)u® = u@'

Then,
B! = diag(BY 70, BSY (11 — 70), - .., BSY (w5 — my_1))-
The ultimate goal is the prove the following norm equivalence
(B~ u,u) = (Au,u). (2.12)

To reach this goal, we use an important operator called as the slice operator induced
by the splitting (2.9).

Cu —2221 T — 1)U (2.13)

In any HB method smoothing is performed on the fine discretization operator
Agjz) Hence, existence of approximations B22a SPD in Sf to the operators Ag)
becomes critical. Finally, in order to link B! to C, we w111 need (9.4) and the
following assumption. The reader can find the verification of this assumption in §9.

ASSUMPTION 2.1.

(AG ! wf) < (BRu! ul) < (1+b) (AR uf), vul € 8.

Now, we can link the two operators.
J

(B~ u,u) = B ((mj — mj-1)u, (mj — mj-1)u) (2.14)
=0
J

~ Y 27| (mj —mjma)ull, = (Cu,u). (2.15)
7=0

Therefore, we concentrate on proving the following crucial norm equivalence

(Cu,u) =~ (Au,u). (2.16)
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3. The WHB preconditioner. Let Q; : Ly(©2) — S; denote the Lay-projection.
We are going to apply this framework to different examples by selecting 7; equal to
I; and @);, which will give rise to HB and BPX preconditioners, respectively. In local
refinement, HB methods enjoy an optimal complexity of O(N; — N;_1) per iteration
per level (resulting in O(N;) overall complexity per iteration) by only using degrees
of freedom (DOF) corresponding to S]f by the virtue of (2.3). However, HB methods
suffer from suboptimal iteration counts or equivalently suboptimal condition number.
On the other hand, the BPX preconditioner enjoys an optimal condition number in
the case of uniform refinement in 2D and 3D. In the companion article [3], we also
showed that the optimal condition number extends to 2D/3D red-green refinement
procedures. The BPX decomposition S; = S;—1 & (Q; — Q;—1)S; gives rise to basis
functions which are not locally supported, but they decay rapidly outside a local
support region. This allows for locally supported approximations, and in addition
the WHB methods [21, 22, 23] can be viewed as an approximation of the wavelet
basis stemming from the BPX decomposition [11]. A similar wavelet-like multilevel
decomposition approach was taken in [20], where the orthogonal decomposition is
formed by a discrete Ls-equivalent inner product. This approach utilizes the same
BPX two-level decomposition [19, 20].

The WHB preconditioner introduced in [21, 22] is, in some sense, the best of
both worlds. While the condition number of the HB preconditioner is stabilized by
inserting @); in the definition of m;, somehow employing the operators I; — I;_; at
the same time guarantees optimal computational and storage cost per iteration. The
operators which will be seen to meet both goals at the same time are:

J—1

Wi, = H I+ Q5 (Lj1 — 1), (3.1)
j=k

with Wy = I. The exact Lo-projection @); is replaced by a computationally feasible
approximation Qf : Ly — ;. To control the approximation quality of QF, a small
fixed tolerance +y is introduced:

(QF — Qj)ullL, <AIQjullL,, Vu € La(R). (3.2)
In the limiting case v = 0, W}, reduces to the exact Lo-projection on Sy by (2.4):
Wi =Qk Ikt1Qk+1-- - 171Qs—1 1; = QQp+1-.. Q-1 = Q.
The properties (2.4), (2.5), and (2.6) can be verified for W}, as follows:
e Property (2.4): Let u®) € Sy.. Since (I;31 — I;)u™ = 0 and Lju® = u* for
k < j, then [I; + Q%(Ljy1 — I;)](u®) = u®), verifying (2.4) for Wj. It also implies
W2 =W, (3.3)
e Property (2.5): Let k <, then by (3.3)
WiW, = [(Ix + Q5 (Iy1 — 1)) .. . (L1 + QF 1 (I — [1—1)) W IW, = Wy, (3.4)
Since Wiu € Sk and S C Sy, then by (2.4) we have
Wi (Wiu) = Wi, (3.5)

Finally, (2.5) then follows from (3.4) and (3.5).
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e Property (2.6): This is an implication of Lemma 9.1.
The case of interest is when m; = W;, where W; is as in (3.1). So, the WHB
preconditioner is defined as below:

J
Bu:=Y_ B (W, - W;_1)u. (3.6)
j=0

The optimality of the WHB preconditioner, namely (2.16), under locally refinement
will be the main result of this paper (see Theorem 7.2). For convenience, we will use
the following notation

J
(Cuyu) = |[ull3p = > _ 27 |(W; = Wi_1)ulF,.
=0

For an overview, we list the corresponding slice spaces for the preconditioners of
interest:

HB: 8§ = (- 118,
BPX: S = (Q;—Q;-1)S;,
WHB: 8/ = (W) = W;-1)8; = (I - QF_)(I; — I;-1)S;.

4. Condition numbers and Riesz Bases. Let H be a separable Hilbert space
with a nested sequence of finite dimensional subspaces,

HycH c...CH;C...CH,

where dim(H;) = N;. Consider a bounded bilinear form a(-,-) defined on H x H
satisfying the inf-sup condition. Let v € H; and let Pl = {gbz}fvzjl be a basis for
H; such that u = 25\21 u;p;, where u = (u,...,un,)” denotes the coordinates of u
with respect to ®). Let AW) = {a(¢>k7¢l)}fz§:1 denote the discretization operator
with respect to ®U). As remarked earlier, we are generally interested in the condition
number of A for different choices of bases, such as hierarchical-type bases.

A basis-dependent inner-product in the coefficient space will be used for the cal-
culation of kgu) (AD), (u,v)gu) = Zi\fzjl u;v;, and the norm induced by (-, )¢ will
be denoted as [[ul3;, = iv:jl u?. Note that rg) (AY)) becomes uniformly bounded
if ®U) chosen to be an orthonormal basis with respect to the inner-product (-, )z of
H. However, it is not practical to assume the existence of an orthonormal basis which
is also computationally feasible. In a separable Hilbert space H, the next best thing
to an orthonormal basis, in this sense, is an H-stable Riesz basis.

DEFINITION 4.1. Let ® = {¢;}52, be a basis for H, and u = .o, c;¢;. If there
exist two absolute constants o1 and oo such that

o0
orllullfy <Yl < oelullfy,  Vue H, (4.1)
i=1

then ® is called an H-stable Riesz basis.
The condition (4.1) for finite dimensional H; can be written as

2
oD < | Hq;m <o, vueH, (4.2)
Tl
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The primary task becomes gaining some control over the ratio oéj ) / crgj ),

DEFINITION 4.2. The family {@U) = {gbl}fvz’l} is a uniformly H;-stable family

of Riesz bases if there exists ¢ independent of j such that: oéj)/ay) <e¢ j— 0.
The case of primary interest is when H; = S;. The discussion above results in
the following theorem.
THEOREM 4.3. Let ®U) be a basis of S; satisfying (4.2). Then with ¢ depending
on the norm of the bilinear form and the stability constant from the inf-sup condition;

Fow (AD) < ¢ 0y Jo}?.

Note that O'éj ) / 0‘§j ) is basis-dependent and our motivation is to find H!-stable Riesz
bases so that the condition number is uniformly bounded.

5. H'-stable Riesz bases and the WHB slice norm. As the multilevel
decomposition (2.8) suggests, one can view Sy as a span of multilevel hierarchical
basis (MHB) functions. The MHB can be any computationally feasible basis and it is
the nodal basis ¢§j ) in our context. Modification to the nodal basis can be made by
any linear operator m; satisfying the properties (2.4), (2.5), and (2.6), in particular
by the WHB operator W; given in (3.1).

DEFINITION 5.1. Let {d)g])}iv:”l be the hierarchical basis for S;, j = 0,...,J.
Then the wavelet modified multilevel hierarchical basis (WMHB) for S; is defined as:

J N
o) = {(Wj - Wj_1)¢§’)} J

J=0

. 5.1
i:N]‘_1+1 ( )

It can be shown (see Lemma 3.1 in [21]) that the WMHB (5.1) forms a basis for S;.
With this fact at our disposal, let u be represented with respect to the WMHB:

J N;
u=>" 3" (W - Wiip)e!. (5.2)
Jj=01i=N; _1+1
Property (2.5) leads to:
k N )
Wku = Z Z Ci(Wj — Wj_l)qf)gj). (53)

7=0 i:Nj71+1

In order to establish Riesz stability, we will need a scaled version of the WMHB
in (5.1) given as below:

J .
o) = {(Wj - Wj—l)éf_’z('j)}N] (5.4)
=0

i=N;_1+1 ’

where u = Z;-I:O ZZN:jNFIH Eigggj) = ijo ZfVZjNFIH ci@(—j) and the following coef-
ficient relationship holds:

=212, =N, +1,...,Nj,

j=0,...,J. (5.5)

. . . Ny —
The slice norm will now be connected to the cofficient norm |[u|2,, = > &:
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LEMMA 5.2. Let u = Z;‘]:O Z'f\gNj_l—‘rl C; (’/T] — 71']_1)(;_553) and let M satzsfy the
properties (2.4), (2.5), and (2.6). Then

(Cu,u) ZM s = meaul, = Z (56)

Proof. Using (5.3) and linearity of 7; respectively:

N N
(mj—mpu= Y clm—m)? =(m—mm) > ol
i=Nj_1+1 i=Nj—1+1

Note that ZiV:ij_ﬁl cigi)z(j) € (I; —I;—1)S;. Then by property (2.6)

N
I(my —muld, =11 Y. as|E,
i=N;_1+1
The mass matrix is equivalent to its diagonal due to shape regularity and compact
support of basis functions. Moreover fori = N;_1+1,...,N;, j=0,...,J, thelocal
refinements under consideration promise a quasiuniform support of d)l(j ) (see (6.3)),
hence ||¢)§j) 17, ~ 2799, Putting these facts together, one gets:

N, N, N;
_— o »
I Y wliB, = > PR, = Y G2
i=N;_1+1 i=N;_1+1 i=Nj_1+1

Eventually by (5.5),

J ) J ) Nj NJ
D 2V||(my —mullf, = Y PCTD N =) "e
j=0 j=0 i=N;_1+1 i=1

0

There are two important connections here to H'-stable Riesz bases. First, the
equivalence (5.6) implies that constructing an optimal preconditioner is equivalent to
forming an H'-stable Riesz basis ®(/). The involvement of m; in both the splitting
(2.9) and in the WMHB representation in (5.2) makes it the most crucial element in
the stabilization. We then come to the central question: Which choice of 7; can make
MHB an H'-stable Riesz basis? The second connection to H!-stable Riesz bases is
the following theorem, which sets a guideline for picking 7;. It shows that H L_stability
of the 7; is actually a necessary condition for obtaining an optimal preconditioner.

THEOREM 5.3. If ®) 4s an H'-stable Riesz basis for Sy, then for all u € Sy
there exists an absolute constant ¢ such that

lmeull g < e ||ullgr, VE<J.

Proof. Let u be written with respect to (5.4). Then, property (2.5) implies:

k N; ‘
mu=y > alm—mo0)e),

Jj=01i=N;_1+1
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» Do

Fic. 5.1. Left: Hierarchical basis function without modification. Wavelet modified hierarchical
basis functions. Middle: One iteration of symmetric Gauss-Seidel approximation. Right: One
iteration of Jacobi approzimation.

<4 S

Fic. 5.2. Lower view of middle and left basis functions in Figure 5.1.

We assume that ®(/) is an H'-stable Riesz basis. Namely, recalling (4.1), there exist
two absolute constants o1 and oy such that

J Ny
ollulin <30 Y @ <oolull, YuesS,. (5.7)
7=0 i:Nj_1+1
Using (5.7) for myu:
k N J Nj o
Imwullfn <o) D E<oay > @< Eullin.
§=0i=N;_1+1 §=0i=N;_;+1 1

0
The finite element interpolation operator I; is not bounded in the H L_norm, and
the following explicit tight bounds are well-known [4, 6, 15, 25]:

J—j+DY2 d=2
Il < e{ §7307 425 Pk,

In the light of Theorem 5.3, the basis in the HB method [0, 24] cannot form an H!-
stable Riesz basis. For the performance analysis of the HB preconditioner, we choose
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the suitably scaled MHB as in (5.4) and (5.5). Then, by Lemma 5.2,

J Ny
lullZe => 25|11 = LoulF, = > = [ul?o.
j=0 j=1

The suboptimal bounds for I; manifest themselves as in the following widely known
result [14, 16] about HB.

J72 d=2
a {0 G258 FIel < el < ol

Therefore, the HB preconditioner is not optimal, and its performance severely deteri-
orates in dimension d = 3. Furthermore, Theorem 4.3 implies that the discretization
operator A(Y) = {a(_éJ), _l(‘]‘))}kN‘l’:1 with respect to the scaled HB cannot be well-
conditioned with the following tiéht bounds:

- J? d=2
rgn (AD) SC{ 2/ d=3 }

On the other hand, Theorem 7.2 indicates that the WMHB in (5.1) forms an
H'-stable Riesz basis (see Corollary 7.3). Hence, by Theorem 4.3, the discretization
operator relative to the scaled WMHB in (5.4) is well-conditioned: g (AM)) < c.
Riesz stability is attained through wavelet modifications. In particular, the modi-
fication is made by subtracting from each HB function (;ng ) € S]f its approximate

Ls-projection Q?_lcﬁgj ) onto the coarse level j — 1. Such modifications are depicted
in Figures 5.1 and 5.2. Note that modification with symmetric Gauss Seidel approxi-
mation gives rise to basis functions with larger supports than the ones modified with
Jacobi approximation.

5.1. H'-stable Ly-projection. We present a crucial consequence of Theorem 5.3.

COROLLARY 5.4. Lo-projection, Qj|s, : Ly — S;, restricted to S is H'-stable
on 2D and 3D locally refined meshes by red-green refinement procedures.

Proof. Optimality of the BPX preconditioner on the above locally refined meshes
is established in the companion article [3]. Application of Theorem 5.3 with Q;
proves the result. Alternatively, the same result can be obtained through Theorem
5.3 applied to the WHB framework. Theorem 7.2 will establish the optimality of the
WHB preconditioner for the local refinement procedures. Hence, the operator W;
restricted to S; is H L_stable. Since W; is none other than @); in the limiting case, we
can also conclude the H!-stability of the Ly-projection. O

Our stability result appears to be the first a priori H'-stability for the Lo-
projection on these classes of locally refined meshes. H1!-stability of Lo-projection
is guaranteed for the subset S; of Lo(£2), not for all of Ly(€2). This question is
currently undergoing intensive study in the finite element and approximation theory
community. The existing theoretical results, mainly in [8, 9], involve a posteriori ver-
ification of somewhat complicated mesh conditions after refinement has taken place.
If such mesh conditions are not satisfied, one has to redefine the mesh. The mesh
conditions mentioned require that the simplex sizes do not change drastically between
regions of refinement. In this context, quasiuniformity in the support of a basis func-
tion becomes crucial. This type of local quasiuniformity is usually called as patchwise
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quasiuniformity. Local quasiuniformity requires neighbor generation relations as in
(6.1), neighbor size relations, and shape regularity of the mesh. It was shown in [1]
that patchwise quasiuniformity holds also for 3D marked tetrahedron bisection [12]
and for 2D newest vertex bisection [13, 18]. Then these are promising refinement
procedures for which H'-stability of the Lo-projection can be established.

6. Red-green refinement. We present only the highlights of the 3D local red-
green refinement procedure introduced by Bornemann, Erdmann, and Kornhuber [7];
more technical detail can be found in the preceding article [3]. The level of a simplex
7 € 7 is defined as

L(t) =min{j: 7 € T;}.
Let us denote the support of basis functions corresponding to ./\/'jf as Qj . Due to nested

refinement, we will have a quasiuniform triangulation on Qf . One can analogously
introduce a triangulation hierarchy

T/ = {r € T+ L(r) = j} = Tiloy.
Simplices in Tjj are exposed to uniform refinement, hence ’]}f becomes a quasiuniform

tetrahedralization.
The following generation bound for neighbor simplices, established rigorously

in [3], will be the foundation for the approximation theory estimates. Let 7 and
7’ be two d simplices in 7; sharing common d vertices. Then
|L(r) = L(T")| < L. (6.1)

The generation bound (6.1) give rise to a Lo-stable Riesz basis in the following way [1,
, 10]: Let the properly scaled nodal basis function be denoted as

qu(j) — 9d/2L;.; ¢§j)a iy = 9—d/2L;. wi, T E/\/j,

where L;; = min{L(7) : 7 € T, x; € 7}. Then Uj:O{&j)}fV:ijle becomes a
Ls-stable Riesz basis [3]:

1> @b Lae) = It teiens s (6.2)

(EieNj
Then (6.2) forms the sufficient condition to establish the Bernstein estimate:
wa(u, t)2 < ¢ (min{1, 27 })3?(|uL,, we Sy, (6.3)

where wy(u,t)2 denotes second moduli of smoothness of u in Ly with step size ¢.
The constant ¢ is independent of uw and J. This crucial property helps us to prove
Theorem 7.2.

7. The fundamental WHB assumption, optimal preconditioners, and
basis stability. As in the BPX splitting, the main ingredient in the WHB splitting
is the Lo-projection. Hence, the stability of the BPX splitting is still important in
the WHB splitting. The lower bound in the BPX norm equivalence is the funda-
mental assumption for the WHB preconditioner. Namely, there exists a constant o
independent of J satisfying:

ASSUMPTION 7.1.

J
S 25— Qul?, < olluldn, Vue Sy,

Jj=0
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Utilizing a local projection Qj, A.7.1 was verified by the authors [1, 3] for 3D local
red-green refinement procedure. The same result easily holds for the projection @;.
Dahmen and Kunoth [10] verified A.7.1 for the 2D red-green refinement procedures.

Before getting to the stability result we remark that the existing perturbation
analysis of WHB is one of the primary insights in [21, 22]. Although not observed
in [21, 22], the result does not require substantial modification for locally refined
meshes. Let e; := (W; — Q;)u be the error, then the following holds.

LEMMA 7.1. Let v be as in (3.2). There exists an absolute ¢ satisfying:

J J
> 25lejll, < er* D2 (Qs - Q-1)ullf,, Vue Sy (7.1)
7=0 §=0
Proof. See Lemma 5.1 and page 119 in [21] or Lemma 1 in [22]. O

We arrive now at the primary result, which indicates that the WHB slice norm is
optimal on the class of locally refined meshes under consideration.

THEOREM 7.2. If there exists sufficiently small o such that (3.2) is satisfied for
v €10,7), then

J
lalfsn = D 2 NW) = Wi—a)ullz, = Jullfp,  we Sy (7.2)
j=0
Proof. Observe that

(Wi =W u=W; —Qj)u— (Wj_1 —Qj_1)u+(Q; — Qj-1)u (7.3)
=e;—ej—1+(Q; — Qj—1)u.

This gives
J J J
D 25(Wy = Wisullf, < ed 2 (Q5 — Q—)uly, + ¢ 2% lejlz,
7=0 j=0 =0

J
<1+ 2Y(Q; — Qj-1)ull7, (using (7.1))
j=0

< cljul|?: (using A.7.1).

Let us now proceed with the upper bound. The Bernstein estimate (6.3) holds for
S; [1, 3, 10] for the local refinement procedures. Hence we are going to utilize an
inequality involving the Besov norm || || g3 , which naturally fits our framework when
the moduli of smoothness is considered in (6.3). The following important inequality
holds, provided that (6.3) holds (see page 39 in [17]):

J
lull3y , < D22 ut|3,. (7.4)
=0

for any decomposition such that u = Z}]:o u?), w9 e §;, in particular for uld) =
(W; — W;_1)u. Then the upper bound holds due to H'(Q) = B; ,(£2). 0

REMARK 7.1. The following equivalence is used for the upper bound in the proof
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of Theorem 7.2 on uniformly refined meshes (cf. Lemma 4 in [22]).

J

2 : 2j 1) 1|12 2
< f 927 ||¢,(9) < )
elfullf < i uores, ;:O: [uD)3, < callull?n

Let us emphasize that the left hand side holds in the presence of the Bernstein estimate
(6.3), and the right hand side holds in the simultaneous presence of Bernstein and
Jackson estimates. However, the Jackson estimate cannot hold under local refinement
procedures (cf. counter example in section 8 in [3]). That is why we can utilize only
the left hand side of the above equivalence as in (7.4).

The WHB slice norm optimality will be connected to Riesz basis and the scaled
WMHB will now be a H!-stable Riesz basis by Lemma 5.2 and Theorem 7.2.

COROLLARY 7.3. Let u be represented with respect to ®7) in (5.4). If there exists
v € [0,70) such that (3.2) holds, then ®) forms an H'-stable Riesz basis:

Ny

lalfon =& = llulf

i=1

Now, we have all the required estimates at our disposal to establish the optimality
of WHB preconditioner for 2D /3D red-green refinement procedures for p € Lo ().
We would like to emphasize that our framework supports any spatial dimension d > 1,
provided that the necessary geometrical abstractions are in place.

THEOREM 7.4. If A.7.1 holds and if there exists sufficiently small vo such that
(3.2) is satisfied for v € (0,70), then

(Bu,u) =~ (Au,u).

Proof. By A.2.1, B%) is spectrally equivalent to A%). Since Agé) is a well-
conditioned matrix, using (9.4) it is spectrally equivalent to 22/I. The result follows
from Theorem 7.2 and (2.15). O

An extension to multiplicative WHB preconditioner is also possible under addi-
tional assumptions. These results will not be reported here.

8. Conclusion. In this article we examined the wavelet modified hierarchi-
cal basis (WHB) methods of Vassilevski and Wang, and extended their original
quasiuniformity-based framework and results to local 2D and 3D red-green refine-
ment procedures. A critical step in the extension involved establishing that the BPX
preconditioner is optimal for the local refinement procedures under consideration.
The first article of this series was devoted to extending the results of Dahmen and
Kunoth on the optimality of BPX for 2D local red-green refinement to 3D local red-
green refinement procedures introduced by Bornemann-Erdmann-Kornhuber (BEK).
The results from the first article, together with the local refinement extension of the
WHB analysis framework presented here, allowed us to establish optimality of the
WHB preconditioner on locally refined meshes in both 2D and 3D under the minimal
regularity assumptions required for well-posendess. An interesting implication of the
optimality of WHB preconditioner was the a priori H'-stability of the Lo-projection.
Existing a posteriori approaches in the literature dictate a reconstruction of the mesh
if such conditions cannot be satisfied. The proof techniques employed throughout
the paper allow extension of the optimality results, the H'-stability of Lo-projection
results, and the various supporting results to arbitrary spatial dimension d > 1.
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9. Appendix: Well-conditioned Aéé). The lemma below is essential to extend
the existing results for quasiuniform meshes (cf. Lemma 6.1 in [21] or Lemma 2 in [22])

to the locally refined ones. Sj(f) = (I; — I;—1)S; denotes the HB slice space.

LeEMMA 9.1. Let T; be constructed by the local refinements under consideration.
Let S]f =(I- Wj,l)S](f) be the modified hierarchical subspace where m;_1 is any Lo-
bounded operator. Then, there are constants ¢y and co independent of j such that

alle’|% < W1k < cllo”lk, X =H', Ly, (9.1)

holds for any ! = (I —m;_1)¢f € ij with ¢7 € S](f).
Proof. The Cauchy-Schwarz like inequality [5] is central to the proof: There exists
0 € (0,1) independent of the mesh size or level j such that

(1—82)(Ve!,Vo!) < (V(¢° + %), V(¢° + ¢)), Vo© e Sjm1,0' € S (9.2)
(1—0*)¢ )17, < cl¢®+ ¢’ [31 (by Poincare inequality and (9.2)). (9.3)

Combining (9.2) and (9.3): (1 —62)||¢7 (|4 < [|¢° + ¢/||%.. Choosing ¢¢ = —7;_1¢7,
we get the lower bound: (1 —6%)[¢7 %, < [|¥7||%.. To derive the upper bound: The
inverse inequality holds for ij because of the quasiuniformity of ’Z}f . The right scaling
is obtained by father-son size relation.

Using the inverse inequalities and Ls-boundedness of m;_1, one gets

. . ) ,
1T 11 < o2 [l 17, < 02 1+ llmjallza)” 107117, < c2ll67 |12,

The slice space S](-f) is oscillatory. Then there exists ¢ such that ||¢7||7 < 27|/ ||%,,.
Hence, ||¢7|%,: < c||¢7||%:. The case for X = Ly can be established similarly. O
Using the above tools, one can establish that Aéjz) is well-conditioned. Namely,

a2 <N <N < 2% (9.4)

J,min — “'j,max

where )\;imin and )\;’max are the smallest and largest eigenvalues of Agjz), and c; are

and ¢y both independent of j. For details see Lemma 4.3 in [21] or Lemma 3 in [22].
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