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GENERALIZED SOLUTIONS TO SEMILINEAR ELLIPTIC PDE
WITH APPLICATIONS TO THE LICHNEROWICZ EQUATION

MICHAEL HOLST AND CALEB MEIER

ABSTRACT. In this article we investigate the existence of a solutioratsemilinear,
elliptic, partial differential equation with distributi@l coefficients and data. The prob-
lem we consider is a generalization of the Lichnerowicz ¢équahat one encounters
in studying the constraint equations in general relatividur method for solving this
problem consists of solving a net of regularized, semilipeablems with data obtained
by smoothing the original, distributional coefficients.drder to solve these regularized
problems, we develog priori L>°-bounds and sub- and super-solutions and then apply
a fixed-point argument for order-preserving maps. We thewsdhat the net of solutions
obtained through this process satisfies certain decay @&stinby determining estimates
for the sub- and super-solutions and by utilizing classiagbriori elliptic estimates.
The estimates for this net of solutions allow us to regarsi¢bilection of functions as a
solution in a Colombeau-type algebra. We motivate this @bleau algebra framework
by first solving an ill-posed critical exponent problem. Towe this ill-posed problem,
we use a collection of smooth, “approximating” problems #imeh use the resulting
sequence of solutions and a compactness argument to obgaintaon to the original
problem. This approach is modeled after the more generalftmtau framework that
we develop, and it conveys the potential that solutions @sé¢habstract spaces have for
obtaining classical solutions to ill-posed nonlinear peots with irregular data.
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1. INTRODUCTION

The goal of this paper is to develop a framework to extend tlug solution the-
ory for the conformally rescaled Einstein constraint etpret when the mean curvature
is constant. In the event that the mean curvature is condtantonformally rescaled
constraint equations decouple, leaving only a semilindgatie equation to solve. In
attempting to extend the rough solution theory in this case, is confronted with the
problem of solving a semilinear elliptic equation with dilstitional coefficients. If these
coefficients do not lie in certain Sobolev spaces with sonat\wkacting restrictions on
their indices, the resulting elliptic problem will not be Nvdefined in the normal weak
sense. In an effort to circumvent these restrictions on ti®gv classes of our coeffi-
cients, we develop a method to reformulate the ill-posechjlsgear PDE with singular
coefficients as a PDE in what is known as a Colombeau algeltraseTColombeau al-
gebras contain the space of distributions via an embeddmgne solves the PDE in
the Colombeau algebra and attempts to associate the geadr@lolombeau solution
with a distribution, thereby obtaining a distributionaligoon to the original ill-defined
problem.

1.1. The Einstein Constraint Equations and Conformal Method. The Einstein field
equationG,, = ~1),, can be formulated as an initial value (or Cauchy) problemrahe
the initial data consists of a Riemannian mefjjg and a symmetric tensor,;, on a
specified3-dimensional manifold\ [8,[20]. However, one is not able to freely specify
such initial data. Like Maxwell’s equations, the initialtda,, and k., must satisfy
constraint equations, where the constraints take the form

R+ k®kq + k? = 25, (1.1)
Dyk® — D%k = k3% (1.2)

Here R and D are the scalar curvature and covariant derivative assmtiatth j,,, &

is the trace ofk,, and p and ja are matter terms obtained by contractifig, with a
vector field normal toM. As the Cauchy formulation of the Einstein field equations is
one of the most important means of modeling and studyingisytsical phenomena,
knowledge of the constraint equations is very importantbse of the influence that
solutions to these equations has on solutions to the ewalytioblem. Moreover, a
number of central questions in general relativity are asklrd entirely through the study
of the constraint equations alone (cf. [2] for discussion).

Equation [(1.1) is known as the Hamiltonian constraint wiflléd) is known as the
momentum constraint, and collectively the two expressamesknown as the Einstein
constraint equations. These equations form an underdetednsystem of four equa-
tions to be solved for twelve unknowgsg, andk,,. In order to transform the constraint
equations into a determined system, one divides the unkaowmfreely specifiable data
and determined data by using what is known as the conformtiade In this method
introduced by Lichnerowicz [14] and York [21], we assumet tha metricg,;, is known
up to a conformal factor and that the trateand a term proportional to a trace-free
divergence-free part d?fab is known. Therefore the determined data in this formulation
of the constraints is the conformal factorand a vector fieldv whose symmetrized



GENERALIZED SOLUTIONS TO SEMILINEAR ELLIPTIC PDE 3
derivative represents the undetermined portioh,gf One obtains the following system
2
— 8A¢ + Rop + §T2¢5 — 0w + (LW)][0® + (LW)?)p™" — 2kpp> =0, (1.3)

2
— Dy(Lw)™ + gDamﬁ + Kj* =0, (1.4)

which forms a determined, coupled nonlinear system oftédlguations that is referred
to as the conformal, transverse, traceless (CTT) formaraif the constraints.
In equations[(113):(114) the quantitigs, 0., 7, p, j* are freely specified and satisfy

A Aa — al al 1 — a
Guv = 0" g, K =970 + (Lw)™] + 5074y, (15)

J* =01, p=9¢"p, (1.6)
andA, £, D and R are the Laplace-Beltrami operator, conformal Killing cgtter, co-
variant derivative and scalar curvature associated yyithFor a given choice of,;, 045,

T, p, j%, if one can solve[(1]3)-(1.4) fat andw, they obtain a solution to the constraint
equations[{T]1)=(112) by using E@._(1.5) to reconstrucipimgsical solutiong,, andk..

1.2. Solution Theory for the CTT Formulation. The solution theory for the CTT for-
mulation of the Einstein constraint equations on a closedifold M can be roughly
classified according to the Yamabe class of the given metsiche properties of (the
mean extrinsic curvature) and the regularity of the spetifiata(g.,, 7,0, p,j). The
mean curvature plays perhaps the largest role. If the meamatcue is constant, then the
analysis of the conformal formulation simplifies greatlychese the Hamiltonian con-
straint and the momentum constraint decouple, leavingglessemilinear elliptic PDE
to analyze. ForC? metrics, the classical solution theory for the conformahfolation
with constant mean curvature (CMC) is now understood faha#le Yamabe classes, and
is summarized in [12]. The solution theory for low-regutadata(g,s, 7, o, p, j), Or SO-
called “rough solution theory”, is also well developed ie &@MC case. The most com-
plete rough solution theory to date appears in [10], andaallfor metricsg,, € W*?,
with any pairs, p satisfyings > I% and specified data, p, j satisfying

oo c Wl a.7)

°pc We=2p,

°jc W24
whereg ande satisfy
] [1 —d 3+ sp

3 7 6p

3 3 3 d
ecc [1,oo)ﬁ[s—1,s]ﬁ[—+d—1,—+d]ﬁ(—+§,oo),
q q q

with d = s — p. There are also some additional assumptions on the Yamase @iy,
and the sign of, p andj. (cf. [3,[15,16] 9, 10]).

1.3. Rough Solutions to the Constraint Equations. There is an incentive to develop a
low regularity solution framework for the Einstein field ediwns to model plausible as-
tronomical phenomena such as cosmic strings and gravitdtieaves|[7]. The solutions
to the constraint equations not only place a restriction dckvmetrics and extrinsic
curvature tensors can be considered as initial data, bytalise determine the function
spaces of maximally globally hyperbolic solutions to thelation problem[[2]. The

3—p 3+p
) 3p

016(0,1)ﬁ[

. 3 ) (1.8)
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solution theory for the constraint equations must theeet@ep pace with the theory
for the evolution equations, in order to avoid limiting thether theoretical develop-
ment of the theory for the evolution problem. Historicalige rough solution theory
of the constraints has in fact lagged behind that of the éxwiyroblem. The local
well-posedness result for quasilinear hyperbolic systenj&1] allows for initial data
(9, K)in H* x H*! for s > g; however it was not until |3, 15, 16] that solutions of
this regularity existed to the constraint equations, arehdtiese initial results were re-
stricted to CMC solutions. Low regularity solutions becameeasingly important when
Klainerman and Rodnianski developagriori estimates in[[13] for the time existence
of solutions to the vacuum Einstein equations in terms of ilie! x H*~! norm of
(Dg, K), again withs > 2. This prompted Maxwell's work on the CMC case In [15]
and [16], Choquet-Bruhat’s work on the CMC caselin [3], andsk®et al.'s work on
both the CMC and non-CMC cases|in[9) 10].

One of the difficulties associated with obtaining rough sohs to the conformal for-
mulation is that in general, Sobolev spaces are not clos@drunultiplication. With the
exception of the Banach spacés™?(M) with s > d/p (whered is the spatial dimen-
sion), the product of two Sobolev functions in a given spadenet in general lie in
that space. This restriction is a by-product of a more geémeadlem, which is that in
general, there is no well-behaved definition of distribogibmultiplication that allows
for the multiplication of arbitrary distributions. One igstead confined to work with
subspaces such as Sobolev spaces where point-wise nualtigh is only well-defined
for certain choices of Sobolev indices. This greatly lintiie Sobolev spaces that one
considers when attempting to develop a weak formulationgif’an elliptic partial dif-
ferential equation, and in particular, places a restnictio the regularity of the specified
data(g., 7, 0, p, j) of the CTT equations.

In order to overcome these limitations, we developed a freonieto solve semilinear
elliptic problems similar to the Hamiltonian constraintgeneralized function spaces
known as Colombeau algebras. This work is a natural extarafiche work done by
Mitrovic and Pilipovic in [18], where the authors found gealezed solutions to linear,
elliptic equations with distributional coefficients. Thévantage of solving PDE in these
generalized function spaces is that it allows one to cireembthe restrictions associated
with Sobolev coefficients and data, and thereby considdyi@nas with coefficients and
data of much lower regularity.

1.4. Low Regularity Semilinear Elliptic Problems. If the mean curvature is con-
stant, the CTT formulatior (1.3)-(1.4) reduces to

1 1
—A¢+ SRo+ 770" — 0’97 = 2mpg " = 0. (1.9)

Locally, on a given chart elemeft= ¢ (U), this problem assumes the form

3
— 3" Dy Dju) + byt — byu" —byu™? = 0 on (1.10)
i,j=1

u=¢@ 0onos.

In an effort to extend the rough solution theory of the caaists, we are interested in
solving (1.10) with minimal regularity assumptions on tleefficientsa™, b, , b,, b3 and
boundary data. Therefore, in this paper we consider a family of elliptienslinear
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Dirichlet problems that are of the form

N K
- Z D;(a"” Dju) + Zblun =0 inQ, (1.11)
ij=1 i=1

u=p onokl,

wherea”, b* andp are potentially distributional and; € Z for each.

The main contributions of this article are an existenceltésu(I.11) in a Colombeau-
type algebra, and an existence resultli(2) for an ill-posed, critical exponent problem
of the form

—Au+au™ 4+ bu’ = 0in Q, (1.12)
u=yp 0onosl,

wherem > 5,1 < i < 4areinN, Q C R% b € L>*(Q) anda € LP(Q) with ¢ <
p < oco. The framework we use to prove existence for (I1.11) consistsnbedding the
singular data and coefficients into a Colombeau-type afgetthat multiplication of the
distributional coefficients is well-defined. To solve (I)1®e do not explicitly require
the Colombeau machinery that we develop to sdlve {1.11)weutise similar ideas to
produce a sequence of functions that converge to a solutiia®) in H'(€2).

The Colombeau solution framework for this paper is basedhiyan the ideas found
in [18]. Here we extend the work done by Mitrovic and Pilipown [18] to include
a certain collection of semilinear problems. While Pilippand Scarpalezos solved a
divergent type, quasilinear problem in a Colombeau typelatg in [19], the class of
nonlinear problems we consider here does not fit naturaibythmat framework. Here we
provide a solution method that is distinct from those posdd @] and [18] that is better
suited for the class of semilinear problems that we areested in solving. The set up
of our problem is completely similar to the set-uplinl[18vej the semilinear Dirichlet
problem in [1.111), we consider the family of problems

P.(z,D)uc = fo(z,u) ong, (1.13)
Ue = pe  0ONOSY,

wheref,, h., andP,.(x, D) are obtained by convolving the data and coefficients of {1.11
with a certain mollifier. Thus a solution to the problem in d@obeau algebra is a net of
solutions to the above family satisfying certain growthraates ine. This is discussed

in detail in Sections 3|2 arid 3.4. This basic concept unekelbth the solution process
in our paper and in [18] and [19]. However it is our solutiomgess in the Colombeau
algebra that is quite distinct from that laid out(in [18], wl¢he authors used linear ellip-
tic theory to determine a family of solutions and then cleeiselliptic, a priori estimates

to prove certain growth estimates. Most notably, the astlereloped a precise maxi-
mum principle-type argument necessary to obtain polynbgn@vth estimates required
to find a solution. Our strategy for solving (1111) differsamumber of ways. First, in
SectiorL 5.1l we develop a family @ priori > bounds to the family of problemis (1113).
Then in Section 512 we show that these estimates determireaad super-solutions to
(1.13). We then employ the method of sub- and super-solsiiioSectiori 411 to deter-
mine a family of solutions. Finally-growth estimates on the sub- and super-solutions
are established in Sectidon 5.2, and in Secfion 6 these d@straee used in conjunction
with the a priori estimates in Sectidn 3.1 to prove the necessagsowth estimates on
our family of solutions.
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This paper can be broken down into two distinct, but relatedsp The first part is
dedicated to solvind (1.12). Our solution to this probleneslaot explicitly require the
techniques that we develop to solve problems with distismad data in Colombeau al-
gebras and only relies on standard elliptic PDE theory. Hewedhe ideas that we use
to solve the problem are closely related: we obtain a salubip solving a family of
problems similar to[{1.13) and then show that these solstogmmverge to a function in
H'(Q). Therefore, we present our existence result[for (1.12)tlirsonvey the benefit
that the more general Colombeau solution strategy has,mpfar solving problems in
the Colombeau Algebra, but also for obtaining solutions orerclassical spaces. The
remainder of the paper is dedicated to developing the Caobamliramework described
in the preceding paragraph. This consists of defining arbadg@ppropriate for a Dirich-
let problem and properly defining a semilinear elliptic gesb in the algebra. Once a
well-posed elliptic problem in the Colombeau algebra hanlfermed, we discuss the
conditions under which the problem has a solution in thelakand finally, describe
how to translate a given problem of the foim (1.11) into a febthat can be solved in
the algebra. It should be noted that while the intention i solutions to[(1.11), the
main result pertaining to Colombeau algebras in this pap@&heoreni 4]1, which is the
main solution result for semilinear problems in our patc@olombeau algebra.

Outline of the papeiThe remainder of the paper is structured as follows. In Se@i
we motivate this article by proving the existence of a solutio [1.12). In Sectiohl3
we state a number of preliminary results and develop thenteahtools required to
solve [1.11). Among these tools and results are the exg@ligitiori estimates found
in [18] and a description of the Colombeau framework in wiitod coefficients and data
will be embedded. Then in Sectibh 4 we state the main existezgult in Theorerm 4.1,
give a statement and proof of the method of sub- and supei@wun Theorerh 413, and
then give an outline of the method of proof of Theorlen] 4.1.ldwahg our discussion
of elliptic problems in Colombeau algebras, we discuss dotkto embed (1.11) into
the algebra to apply our Colombeau existence theory. Theairetar of the paper is
dedicated to developing the tools to prove Theofem 4.1. kti@e8 we determine
a priori L*> bounds of solutions to our semilinear problem and a net of and super-
solutions satisfying explicit-growth estimates. Finally, in Sectibh 6 we utilize the tesu
from Sectiorl b to prove the main result outlined in Secfibn 4.

2. SOLUTION CONSTRUCTION USING ASEQUENCE OFAPPROXIMATE PROBLEMS

If Q C R3, the Sobolev embedding theorem tells us t#Hat) will compactly embed
into LP(2) for 1 < p < 6 and continuously embed fdr < p < 6. Given functions
u,v € H'(Q), this upper bound op places a constraint on the values ¢hiat allow for
the product.‘v to be integrable. In particular, Sobolev embedding anddstahHolder
inequalities imply that this product will be integrable farbitrary elements of7* ()
only if 1 <7 < 5. More generally, ifa € L>(Q), the termau®v will also be integrable.
However, ifa is an unbounded function ib?(€2) for somep > 1, then this product is not
necessarily integrable without some soragdriori bounds oru, u, andv. Therefore, the
following problem does not have a well-defined weak formiatatn H'(2):

—Au+au™ +bu' =0 inQ, (2.1)
u=p onokl,

whereQQ cC ¥, m >5,1<i<4areinN,p e H(),b e L>*() anda € LP({)
for £ <p < 0.
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The objective of this section is to find a solution to the alyonadlem. In order to solve
(2.1), we solve a sequence of approximate, smooth problemisise a compactness
argument to obtain a convergent subsequence. We first dediressary notation and
then present the statements of two theorems that will bessacg for our discussion in
this section. Then we prove the existence of a solution ) (Zinally, we show that if a
solution exists, then under certain conditions we can cootsa net of problems whose
solutions converge to the given solution.

2.1. Overview of Spaces and Results for the Critical Exponent Prblem. For the
remainder of the paper, for a fixed dom&ncC R", we denote the standard Sobolev

norms o) by
s = ( / () dx) , 2.2)

k
[ullwnr = (Z ||DiUI|’£p>
i=1

For the special case that= 2, we let H*(Q2) = W*2(Q) andH{ (€2) denote the functions
in H'(Q2) that have trace zero. Furthermore, let

3=

ess supt = 1, (2.3)
ess infu = 1.

In our subsequent work we will also require regularity caoiodis on the domaif and
its boundary. Therefore, we will need the following defioititaken from[[5]:

Definition 2.1. A bounded domaift ¢ R" and its boundary are of clags®~, 0 < o <
1, if for eachz, € 09 there is a ballB(z,) and a one-to-one mapping of B onto
D C R™ such that:

(1) ¥(BNQ) C Ry,

(2) ¥(BNoQ) C ORY,

(3) ¥ € C*(B), ¥~! € C**(D).

We say that a domaif? is of classC™ if for a fixed0 < a < 1 it is of classC*
for eachk € N. Additionally, for this section and the next we will requites following
Theorem and Proposition:

Theorem 2.2. Supposé) C R" is a C* domain and assumg : Q xRt = Risin
C>*(Q2 x Rt)andp € C>(12). Let L be an elliptic operator of the form

Lu= —D;(a" Dju) + cu, and a” ce C>®(Q). (2.4)

Suppose that there exist sub- and super-solutions Q — R andu, :  — R such
that the following hold:

(1) u_,uy € C(Q),
() 0<u_(x) <uy(r) Voe.

Then there exists a solutiane C*°(2) to
Lu = f(z,u) on, (2.5)
u=p 0nosl,
such thatu_(z) < u(z) < uy(x).
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Proposition 2.3. Letu be a solution to a semilinear equation of the form
N K
—> " Di(a’Dju)+ Y b =0inQ, (2.6)
ij i=1

u=p, p(z)>0 on o

wherea,b' andp € C*(Q)). Suppose that the semilinear operator(g) has the
property thatn; > O forall 1 < : < K. Letng be the largest positive exponent and
suppose that’ (z) > 0in Q. Define

K
' = inf inf b'(x)y™ >0 Vy € (c, : 2.7
f' = inf {;;25 (x)y y € (c OO)} (2.7)
B = max{f’, sup p()}. (2.8)
€N
Then ifu € H'(Q) is a positive weak solution to EGZ.8), it follows that0 < u < 8 <

Q.

For the proof of Theorem 2.2, see Section 4.1. A more detaiesion of Proposi-
tion[2.3 and its proof can be found in Sectldn 5. Now that weetall/ of the tools we
need, we shall now prove the existence of a solution to a proloif the form[(2.11).

2.2. Existence of a Solution to an lll-Posed Critical Exponent Poblem. For the
following discussion, let? c R? be an open and bounded domain and assume that
Q) cc Y is also open and af »*-class.

Here we seek a weak solutiane H'((2) to the problem

—Au+au™ +bu' =0 inQ, (2.9)
u=p onfl,
wherem > 5,1 <i <4 are inN,
be L™(), acLP(Q), g <p<oo, peH(Y), (2.10)
and
a>0, b<0, and p>0. (2.11)

If our test function space i#}(12), Eq. (2.9) is ill-posed due to the term™. The
weak formulation of Eq.[(2]9) would contain the integral

/ au™v dzx,
Q

wherev € H'(Q), a € L?(Q), andu € H'(Q). For these choices of function spaces this
integral need not be finite. We show that this problem doeacdhliave a weak solution
by regularizing the coefficients of our problem and solvirggguence of approximating
problems. We obtain the following proposition.

Proposition 2.4. The semilinear problen2.9) has a solution, € H'(Q) if a,b,andp
satisfy the conditions i@.10)and (2.11)

Proof. To determine a solution td (2.9), we consider the sequena®lations to the
approximate problems

— Ay + ay(up)™ + by (u,)' =0 inQ, (2.12)
Up = pp,  ONOSLY,
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wherea,, = a*¢,, b, = b* ¢,, andp,, = p* ¢, ande, = n¢(nzx) is a positive mollifier
where [ ¢(z) dz = 1. Given thatp is a positive mollifier, it is clear that for eache N,

an >0, b, <0and g, > 0.

We first verify that the sequence of problerhs (2.12) has atisoldor eachn. To do
this, we will utilize Theoreni_2]2 and Propositibn2.3. l&thave the same properties
asf in Propositior 2.8 for the sequence of problems (2.12). Tuséng the notation in
Proposition 2.3, we can write explicit expressionsfdor (2.9) ands,. It is not hard to

show that
ﬁ :max{(—g) 7 7/6} )
a
and
b\ .
Bn = <—EI,—) 5 Bn = max {5napn} .

By Propositionl 2.8, for each € N, j,, determines ara priori upper bound for the
approximate problems. Furthermore, it is not difficult te $kat for eacm € N that
0 and 3, are sub- and super-solutions for (2.12). See Settidn 5.Z'hadreni 4.8 for
more details. Therefore Theoréml2.2 implies thatfaufficiently larged < u,, < 3, is

a solution inC>(92) to (2.12) given thap,,, a,,, b, € C*(Q2) for n sufficiently large.
Now observe that for each € N, 5, < 3, which follows from the fact that

ba(z) = / (—b(y))ulx — ) dy < / (D)pule —y) = —b,  (2.13)

anda,(z) > a, which is verified by a similar calculation. Therefore, bgredard?
elliptic regularity theory
[wnllwze <C(I = an(un)™ = bu(un) o + llunllzv) (2.14)
<CB lanlle + Bllbnlle + Bn) < M < oo,
whereM is independent of, given thats,, < 3, a,, — ain L?, b, — bin LP. Because
p > ¢ andQ is of C*-class,IW?7(12) embeds compactly inté/*(2). Therefore, there

exists a convergent subsequenge — « in H'($2). We claim now that satisfies the
following two properties:

(1) 0 < u < g almost everywhere,
(2) u weakly solves[(219).

The inequality) < u < f3 a.e. follows from the fact the:,,, — w in H'(Q2) and
0 <wup, <pB,, <p foreachj € N.

Indeed, if we assume that> 5 on some set of nonzero measure, then for serttee
setd, = {z € Q: u(z) > 8+ 1} has positive measure. Then for ale N, we have
that

1
/|unj —ul? dx > /A U, — ul* do > ﬁu(An) > 0.

But this clearly contradicts the fact that, — w in H'(Q2). A similar argument shows
thatu > 0, a.ein €.
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Finally, we want to show that weakly solves[(2]9). Let > 0. Then for anyv €
H}(Q) we have that

'/ (Vu - Vo + au™v + bu'v) dx

= ‘/ (Vu-Vo+au™ +bu'v) dv (2.15)

—/ (Vtn, - VU + an, (un,)™0 + by, (un,)'v) dz|,

given thatu,,; solves[(2.1R2). Then expanding the second line of the abavatien we
find that

'/ Vu - Vv + au™v + bu'v d (2.16)
< / ‘Vu Vv =V, - VU‘ dxr + / ‘aumv — anj(unj)mv‘ dx
+ / |bu'v — by, (un,) 0| da (2.17)

< / |Vu - Vv —Vu,, - Vo| dz+ / lau™v — a(u,,)™v| dx
+ / |a(tn,)™ v = an, (un,)™v| dz + / |bu'v — b(uy,)'v| dz

+/‘b(unj)iv - bnj(unj)iv} dzx. (2.18)

Every term in[(2.18) tends togiven thatu,, — uin H'(2), a,, — ain L*(Q2), b,, — b
in LP(2) and0 < u < . To show that the expression

/ lau™v — a(uy,)™v| dz — 0,

we apply Hlder’s inequality to obtain
/ lau™v — a(uy,)™v| dx < lall ¢ llu™v = ug vl Ls.

Giventhatu,, — win H'(Q), u,, — u a.e, where we pass to a subsequence if necessary.
Thereforeugljv — u™v a.e. Finally, we observe that

™ — g [°|v]® < 6450l
and given that € H'(Q) andQ) is bounded, the Dominated Convergence Theorem
implies thatl|u™v — uy' v|[ze — 0. Therefore

/ |au™v — a(uy,,)™v| dz — 0.

We apply a similar argument to show that the lower order temi&y. (2.16) converge
to zero and conclude thatis a weak solution td (219). O

3. PRELIMINARY MATERIAL: HOLDER SPACES AND COLOMBEAU ALGEBRAS

We now begin to develop the Colombeau Algebra frameworkwiiabe used to solve
(1.11). We first define Holder Spaces and state preciseoversif the classical Schauder
estimates given in_[18]. The definition of the Colombeau Algein which we will
be working and these classical elliptic regularity estesanake these spaces the most
natural choice in which to do our analysis. Therefore we wikk almost exclusively
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with Holder spaces for the remainder of the paper. Follgvaar discussion of function
spaces, we define the Colombeau algebra in which we will wodktben formulate an
elliptic, semilinear problem in this space.

3.1. Function Spaces and Norms.In this paper we will make frequent use of Schauder
estimates on Holder spaces defined on an opef setR”. Here we give notation for
the Holder norms and then state the regularity estimatasatiti be used.

All notation and results are taken from [6]. Assume that- R"™ is open, connected
and bounded. Then define the following norms and seminorms:

|u(z) = u(y)|

[u]as0 = sup ————=, (3.1)
z,yeQ |x - y|
TFy
[u]r0:0 = sup sup | D"ul, (3.2)
|Bl=k 2€Q
[t]k0c = sup [DPu] a0, (3.3)
|8|=k
k
lullor@y = lulka = _[uljo0, (3.4)
=0
||U||ck,a(§) = [u[ka0 = [Ulr0 + [Ukan- (3.5)

We interpretC*<(Q) as the subspace of functiofiss C*(Q) such thatf*) is a-Holder
continuous. Also, we view the subspace“ (1) as the subspace of functiofiss C*(Q)
such thatf*) is locally «—H®older continuous (over compact séfsc C ).

Now we consider the equation

Lu = a”Djju+ buDju+cu= f inQ, (3.6)
u=p onos, (3.7)

wherel is a strictly elliptic operator satisfying
a’? =d" and a7 (x)E > MNEPP, 1 eQ, £eR™

The following regularity theorems can be found(in [6] and][1Bee [6] for proofs. Note
that the constant' in the following theorems has no dependence\ar ).

Theorem 3.1. Assume thaf2 is a C**-class domain irR" and thatu € C**(Q) is a
solution(3.8), wheref € C*(Q2) andp € C*<(Q). Additionally assume that

‘aij‘(),a;ﬂa ‘bi|0,a;Qu ‘C‘O,Q;Q S A.

Then there exist§' > 0 such that

A 3
ol <C (3 ) (ulua+ e +[floo)

This theorem can then be extended to higher order deriwabiyeaepeatedly applying
Theoren 3.11. See [18] for details. We summarize this resdlié next theorem.

Theorem 3.2. Let Q2 be aC****-class domain and € C*(Q2) N C°(Q2) be a solution
of (3.8), wheref € C*(Q) andp € C¥*22(Q)). Additionally assume that

‘aij|k,a;Qa |bi‘k‘,a;97 ‘C‘k,a;Q S A.



12 M. HOLST AND C. MEIER
Thenu € C*29(()) and

A

3(k+1)
‘u‘k+270¢;9 S Ck+1 <X) (‘U‘O;Q + |p|k+2,a;Q + |f‘k,a;ﬂ)7

where(' is the constant from Theorédm B.1.

3.2. Colombeau Algebras. Now that we have defined the basic function spaces that we
will be working with and stated the regularity theorems tét be required to obtain
necessary growth estimates, we are ready to define the Celnddgebra with which
we will be working and formulate our problem in this algebra.

Let V' be a topological vector space whose topology is given by areasing family
of seminormgy,. Thatis, foru € V, p;(u) < p;(u) if @ < j. Thenlettingl = (0, 1], we
define the following:

Ev = (V) whereu € &y is a net(u,) of elements i/ with e € (0,1],  (3.8)
Euv={(u)€eéy | VEeN JaeR : pg(u)=0(e") ase — 0}, (3.9)
M ={(ue) €€vmr | VEENVaeR : pgp(ue) = O(e*) ase — 0}.  (3.10)

Then the polynomial generalized extensionlofs formed by considering the quotient
Gv = Emv/Ny.

We now give a few examples of generalized extensions. SeZ[1& a more detailed
discussion.

Definition 3.3. If V. = C, r € C, ux(r) = |r|, then one obtain€, the ring of gen-
eralized constants. This ring contains all nets of complembers that grow no faster
than a polynomial ine=! ase — 0. For example(e* ') ¢ C given that this net grows
exponentially inr—! ase — 0.

Definition 3.4. Let{2 C R™ be an open sel/, CC 2 an exhaustive sequence of compact
sets andv € Ny a multi-index. Then if

V=0%(Q), feC™(Q), m(f)=suwp{[Df] : €U, |of <k},
one obtaing7*(£2), the simplified Colombeau Algebra.

Definition 3.5. If V' = C*°(Q2), whereQ2 C R™ is bounded and
pe(f) =sup{|D*f] : la| < k, = € Q},

we denote the generalized extensiogb§2). The set); c(m) Will be denoted by, Q)
and be referred to as the space of moderate elements. Théca%) will be denoted by

N (Q) and will be referred to as the space of null elements.

Both G*(Q2) and C were developed by Colombeau and laid the basis for the more
general construction described(in (3.8)-(3.10). See [dijfore details. Asin[18], for the
purposes of this paper we are concerned @iif1) given that we are interested in solving
the Dirichlet problem and require a well-defined boundatyealf (u.) € £,,(Q) is a
representative of an elementc G(Q), we shall writeu = [(u.)] to indicate that is
the equivalence class ¢f..). At times we will drop the parentheses and simply write
[u.]. Addition and multiplication of elements (Q) is defined in terms of addition and
multiplication of representatives. That iszif= [(u.)] andv = [(v,)], thenuv = [(ucv,)]
andu + v = [(u. + v.)]. Derivations are defined far = [(u.)] € G(Q) by 9,,u =

[CmIE
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Theorem 3.6. With the above definitions of addition, multiplication antfetentiation,

G(1) is a associative, commutative, differential algebra.

Proof. This follows from the fact component-wise addition, muitgation, and differ-
entiation maked’! = (C>=(Q))! into a differential algebra. By desigd,,(Q2) is the
largest sub-algebra ¢t>(2))! that contains\/(Q2) as an ideal. Thereforé(Q) is a
differential algebra as well. See [7]. OJ

Now that we have given the basic definition of a Colombeaulalgenve can discuss
how distributions can be embedded into a space of this type.

3.3. Embedding Schwartz Distributions into Colombeau Algebras While the alge-
bras defined above are somewhat unwieldy, these spaces lhuitexl for analyzing
problems with distributional data. The primary reason fis ts that for a given open set
2 C R", the Schwartz distribution®’(2) can be linearly embedded in&(£2). This
allows one to define aextrinsicnotion of distributional multiplication that is consisten
with the pointwise product of>°(2) functions. Here we briefly discuss the method use
to embedD’(Q?) into G*(2). Given that we will primarily be working with the general-
ized extensio; () defined in[(3.5), we will then discuss how to embed certairssts
of D'(Q)into G(Q).

We begin by recalling the definitions of the spaces that véll&levant to our discus-
sion. The Schwartz distributions on an open QetC R™ are denoted’(2) and are
defined to be the dual @(£2), the space of'>(£2) functions with support contained in
Q2. Foragiveny € D(Q2) andT’ € D'(12), the action off" on ¢ will be denoted by(T', ©).
We let€'(Q2) € D'(Q2) denote the denote the space of compactly supported disbriisu
Finally, we define the space of Schwartz functiohi®”) by

SR") ={f € C*R") [ [fllap <00, Vo, 5}, | fllap = sup 2* D7 f(x)], (3.11)

wherea, 8 are multi-indices.
Letp € D(R") satisfy

. . (T
o(z) >0, /n o(z) de =1, lgrolgoe(x) = lelt%e © (E) — §(z). (3.12)
So p(z) is a standard, positive mollifying function. To constructr @mbedding, we
will also require another function with more restrictiveoperties. Let) € S(R") be
a function such thatr = 1 on some neighborhood of Then definep € S(R") by
¢ = F~1[¢], the inverse Fourier transform ¢f It is easy to see that

/ ¢pdr=1 and *¢pdr =0 V]a|>1. (3.13)
n Rn

Letg. = e "p(2).

The properties ob specified in[(3.13) are extremely important. By convolvinighw
the functiong, and using the sheaf properties of the sp@tg?), one is able to construct
a linear embedding

i D(0) = G () (3.14)

See|[7] for details. Animportant property of this embeddsiat for anyf, g € C>°(1),
i(fg) = i(f)i(g). Therefore, multiplication irg*(2) is an extension of point-wise mul-
tiplication of C'*° functions.
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We now discuss a method of embedding certain subse®¥ 1) into G(Q). The
reason that we must restrict our embedding to certain ssib§&r' (2) is that our gener-
alized extensio (12) is defined on the closed s@t Colombeau algebras of this form
no longer have a sheaf structure and so we can no longer takatade of the general
embedding[(3.14) constructed A [7]. However, as in the gagdethe embedding con-
structed in|[[7], our main tool for constructing our embedpwill be convolution with
the functiong¢ satisfying the properties in (3.1.3).

The most natural way to associate a given elemegt D'(2) with a net of C>(Q)
functions is by mollifyingu with a function likey defined in [(3.1R2). But in order for
our embedding to preserve point-wise multiplicationC6f () functions, we need the
functions that we convolve with to have the same properties asdefined in [(3.1B).
However,¢. € S(R") for eache € (0, 1], so convolution with an arbitrary elememtc
D'(Q) is not well-defined. This is where the sheaf propertie§ @#) are instrumental
in constructing the embedding (3114). However, we no lorigere this option, and
therefore focus on finding a subsetsI¥{(2) for which the convolution is defined.

Given f € C>~(Q), we again observe that the convolutighx ¢.) is not well-defined
forallz € Q, e € (0,1]. This follows becausg has no value outside d8. What
we seek is a way to exter@(9) functions toC>°(R") functions, and more generally,
elements oD’(2) to D’(R™), so that the convolution has meaning. We note that it is not
possible to extend an arbitrary element¥{(2) to D’'(R"), so we will restrict ourselves
to a subspace dV’(2). The following theorem taken from[1] will provide us with a
large subspace @' ((2) that we can extend.

Theorem 3.7. Suppose tha®)’ cc (2, and that(2 is bounded and of *°-class. Then
there exists a total extension operator, which has the ptgpkat for each) < £ < oo,
I<p<x

E:WhP(Q) — WFP(R™), (3.15)
E(u)|q = u,
and
| Eullwrp@ny < C(n,p)l|ullwese)- (3.16)

Moreover,E can be extended & (') C £'(Q2) so that ifu € £'(€Y'),
Ew)|g=u (3.17)
E(u)
Proof. Let o = d(£2,09Q) > 0. Given that(2 is of C*°-class, we may coved() with
finitely many balls of radiugy/2 (or smaller if necessary) that ae>-diffeomorphic
with some subset aB, (0) N R”.. As in the proof of Theorem 4.28 in[1], we may use

these neighborhoods to construct a total extension opesditich has the property that
forevery0) < k < o0,1 < p < o0,

E :Wk? 5 WhP(RM), (3.18)

E(f)lo = f. (3.19)

We can extend this extension operatorét¢?'). It is well know that for anyu €
WHP(Q), there exists an approximating et } € C°°(Q) such thati. — uin W2(Q).

See the Global Approximation Theoremin [5]. Using the sanger@ent as in the proof
of this theorem, we can obtain an approximating net'®f(2) functions foru € £'(€Y').

QCIO.
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We have that, = 0* f for some continuoug with support in an arbitrary neighborhood
of supgu). By shifting the argument of and mollifying up to the boundary in each of
the balls covering( defined above, and then applying a partition of unity argumea

obtain a nefu.} C C*(Q2) such that.. — w in D'(2). Furthermore, for this neftu. }
there exists, € (0, 1) for whichu, = 0onQNYif 0 < € < €. Foragiveru € £'(QY),
we let{u.} denote this approximating net and we define

E(u) = lir% E(u).
€—>
Based on the properties of, this extension will extend by zero outside of2. We note

that foru € W*?(Q) N £'(Y), this definition of extension o’ (') will be consistent
with the extension ofl’**(Q) given the properties af in (3.18). O

We now define the following subspace®f(2) that we will embed int; (). Fix an
open subset d’ cc €2, whereQ? is of C*°-class. Let

f’(Q)ze’(Q’)+< U W’W(Q)), (3.20)

SOV, L3P >

where the above notation indicates the subspace formedebguim of£’(€2) and the
union of the Sobolev spaces as subspacéd® @t).

Theorem 3.8. Let £ be the extension operator defined in Theofem 3.7 and. et
S(R™) be the net of functions defined@.13) Then the map

i F'(2) = G(2), (3.21)
i(u) = (E(u) * ¢l + N (92),
is a linear embedding oF’(Q) into G(Q2).

Proof. By the linearity of the extension operaty, we observe that for any € £'(€')
andv € W*P(Q),0 < k < o0, 1 < p < 00, E(u + v) is well defined and unique in the
distributional sense. Therefore, for any elemerg F'(2), E(u) € D'(R™) is unique
and; is well-defined. For any. € W*?(Q2) and multi-indexx, we have that

I*(E(u) * o) = (3.22)
[ E@o oo -y dy = [ B - e loroly) dy = (),

given thatE(u) € WkP(R") and¢ € S(R"). Soi(u) € G(2). A similar argument
can be used to show thatv) € G(2) if v € £'(Y). By linearity,i(u) € G(2) for any
u € F'(Q). Now we only need to show thatis injective. Suppose thatu) € N(12).

ThenE(u) * ¢.(x) — 0 uniformly on(Q. Therefore, for any) € D(Q),

(1, 09) = limn{u = 6, 1) = T( B (u) * 6, ) = 0.
Sou = 0in D'(2) andi is injective. O
The embedding has the important property that it preserves point-wisdiplidation

of C*°(2) functions. We prove this by following the argument|in [7]. Vifst observe
that we may embed € C*>(Q) into G(Q2) by the map

o:0™(Q) — G(Q), (3.23)
a(f) = (f)e + N(Q)
where( f). the constant net such that= f for all € € (0, 1].
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Proposition 3.9. The embedding has the property that| ;) = 0.

Proof. This follows from the proof of Proposition 1.2.11 inl [7] arftktfact that ifu €
C>*(Q), thenE(u) € C*(R") andE(u)|q = u. O

Proposition 3.9 allows us to conclude thapreserves point-wise multiplication of
C*°(Q) functions. Indeed, i, g € C>°(9), then

i(fg) = olfg) = o(f)alg) = i(f)i(g).
Now that we have a means of embedding a rather large claserogals ofpD’(Q2) into
G(Q) that are useful for solving PDE, we can begin to formulatetvahsemilinear prob-
lem in G(Q) looks like.

3.4. Nets of Semilinear Differential Operators. We begin by defining a semilinear
differential operator o7 (Q2). Our construction strongly resembles the construction by
Mitrovic and Pilipovic in [18]. Fore < 1, if (a¥), (b}) € &(Q), we obtain a net of
operators by definingl, to be

K K
A, = —Dy(a? Dju) + Z biu™ = —a? D;Dju. — (D;a?)(Dju.) + Z b (ue)™,

wheren; € Z. Under certain conditions, we can view a net of operatorhefabove
form as an operator of(€2). Here we determine these conditions, which will guarantee
that this net of operators is a well-defined operatoGon).

Given an element in G(2), we first need to ensure that.u.) € £,,(2). Based on
how derivations and multiplication are defineddtt?), the only serious obstacle to this
is if n; < 0 for somei < K. Therefore, we must guarantee that the elenmi@ny™) is a
well-defined representative §xQ) if n; < 0. It suffices to ensure that= [(u.)] has an
inverse inG(Q). This is true if for each representative.) of u, there exists, € (0, 1]
andm € N such that for alk € (0, ¢), inf, g |uc(z)] > Ce™. Seel[7] for more details.
Sou € G(Q) must possess this property in order for the above operatbate any
chance of being well-defined. For the rest of this section sgeime that, satisfies this
condition. ‘

Now supposeéa“) (b)) in SM(Q) and let

K
A= Z D;(a” D;u) + Z b =Y D;Dju, — (Dia?)(Djue) + Y bi(ue)™.
i,7=1 =1
We say that A,) ~ (A,) if (a¥ —a¥), (b —b.) € N*(Q). Then(A,) ~ (A,) if and only
if (Acue — A ue) e N(Q) fo r al (uﬁ) € Ey(Q) due to the fact that the above operators
are linear in(a¥’) and(b').

Let A be the family of nets of differential operators of the abowenf and define

Ay = A/ ~. ThenforA € A, andu € £,,(Q), define
A:G(Q) — G(Q) by Au = [A.u,

where

K
[Acu] = [~aP][DiDju] + [~ Dia?][Dyu] + Y [Bi][ul’]: (3.24)
=1
Using this definition,A € A, is a well-defined operator ofi(Q?). We summarize this
statement in the following proposition.
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Proposition 3.10. 4, is a well-defined class of differential operators frgitf2) to G(12).

Proof. Based on the construction gfy, it is clear that for a given representatifte ) of

u € G(Q), (Acu) and(A.u.) represent the same elementiff). Furthermore, given a
representativeéA. ) of A,, we also have thdtd.u.| = [A.u.] for any two representatives
of u € g(ﬁ). To see this, we first observe that for eaclevery term inA.u. is linear
except for thgu,)™ terms. So to verify the previous statement it suffices to stiaifor
eachn; € Z, (u)™) = ((w.)™) + (1,), where(n,) € N (Q). Given that(u.)] = [(u.)]

in G(Q), we have(w,) = (u.) + (n.) for (n.) € N(Q). For fixede, n; € Z*,

cwmzw+mwsz@§WMWWﬁ=wmww@

J=0

where7, consists of the summands that each contain some nonzere pbwe Clearly
the net(n7,) € N'(Q). If n; € Z~, then for a fixed,

1 1 1

(e + nolnil — Sl () (e (olnil=i - (el 477,

J

(@) =

By looking at the difference

()"~ o = L =i
DT o+, (o (o 4w,y

we see that the nétu.)™) = ((u.)™) + (9.), where(s).) € N(Q). Therefore for any
u € G(Q) possessing an inverse, and ahy A, the expressionlu = [A.u] € G(Q)
is well-defined. O

3.5. The Dirichlet Problem in G(f2). Using the above definition afl, we can now
define our semilinear Dirichlet problem @gh(Q)). Letu,p € G(Q2) whereQ2 C R" is
open, bounded and af*°-class. Then lef’ be a total extension operator Qfsuch that

for f € C*(Q), Ef € C*(R") andEf|g = f. Seel[1] for details. Using’ we may
may defineu|sn = plaq for elementsy, p € G(Q) if there are representativés,) and
(pe) such that

Ueloa = peloa + nelaq,

wheren, is a net ofC* functions defined in a neighborhood@® such that

sup |n.(x)| = o(e*) Va € R. (3.25)

€N

This will ensure that:|sn = plsq does not depend on representatives [18]. With this
definition of boundary equivalence, for a given operatoe .4, the Dirichlet problem

Au=10 inQ, (3.26)
u=p onos)

is well-defined inG(Q2). Now we state the conditions under which the above problem
can be solved i (Q2).
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4. OVERVIEW OF THE MAIN RESULTS

We begin this section by stating the main existence resulthfe Dirichlet problem
(3.26). LetA € A, be an operator 06(£2) defined by[(3.24). Also assume that the coef-
ficients of A have representativés’), (b!) € £,,(12) that satisfy the following properties
fore € (0,1):

al =al',  a?&& > NJE)? > CretlE]?, (4.1)

|07 sty [Dlka < Ape < Co(k)e™®, Wk €N
bl < —Cs¢f,  {ny:in; <0} #0, ny=min{n, :n; <0}
bE > Cue?, {ng:in; >0} #0, ng =max{n;:n; >0},

where(C', Cy, C3 and(C} are positive constants independent ahd the constants
a,b,c,d € R are also independent ef The notationCy(k) andb(k) is meant to indi-
cate that these constants may depend.omhen the following Dirichlet problem has a
solution inG(Q):

Au = [Au] =0 in (4.2)
u=p onosl.

We summarize this result in the following theorem, whichl\w# the focus of the re-
mainder of the paper:

Theorem 4.1. Suppose thatl : G() — G(Q) is in A, and that the conditions ofd.7)
hold. Assume that € G({2) has a representative,) such that fore < 1, p. > Ce“ for
someC' > 0 anda € R. Then there exists a solution to the Dirichlet probléh®) in
G(Q).

Proof. The proof will be given in Sectionl 6. O

Remark 4.2. We can actually weaken the assumption@lid) so that the conditions on
the representative& /), (b!), (b5), (p.) only have to hold for alk € (0, ¢,) for some

€0 € (0,1). Suppose that this is the case, and that using these consglitve are able to
show that for alle € (0, ¢), there exists:. that solves

Au. =0 inQ, (4.3)
Ue = pe 0NN

If u. satisfies the additional property that for &l € N, there exists somé € (0, ),
C > 0,anda € Rsuchthatforalk € (0, ¢)), |uro < Ce?, then we can form a solution
(ve) € Ex(Q) to (@2) by definingy, = u, for e € (0, ¢) andv, = u,, for e € [e, 1]. The
solution theory that we develop to prove Theorem 4.1 withsttnger conditiong4.1)
will also imply the existence of the partial net.) of solutions ta4.3)in the event that
the constraints outlined i@.1) only hold fore € (0,¢) C (0,1). We will require this
fact when we consider how to embed and s@v&l)in G(Q2) later on in Sectiof 3]3.

We begin assembling the tools we will need to prove Thedrelin Bhe first tool we
need is a method capable of solving a large class of semilprealems. The method of
sub- and super-solutions meets this need, and we discegzrtiuess of solving elliptic,
semilinear problems in the following section.
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4.1. The Method of Sub- and Super-Solutions.In Theorem[ 4.3 below, we state a
fixed-point result that will be essential in proving Theordnd. This fixed-point re-
sult is known as the method of sub- and super-solutions dtigetéact that for a given
operatorA, the method relies on finding a sub-solution and super-solutiom . such
thatu_ < u,. A large part of this paper is devoted to finding a net of pesigub- and
super-solutions fof (412) and establishing growth condgifor them. In the proof below,
let

Lu = —D;(a" Dju) + cu, (4.4)
be an elliptic operator where
a’ =d, a8 > NEP and @, ce C(Q).

We now state and prove the sub- and super-solution fixed-pesnlt for these assump-
tions.

Theorem 4.3. Supposé) C R" is a C* domain and assumg : Q xRt = Risin
C>*(Q x RTY)andp € C>*(Q). Let L be of the form(4d.4). Suppose that there exist
functionsu_ : Q — R andu, : Q — R such that the following hold:

(1) u_,uy € C*(Q),
(2)0<u_(r) <uylr) Vore,
3) Lu_ < f(z,u_),
(4) Lu+ Z f(x,u+),
(5) u_ < p on 09,
(6) uy > p on Of).

Then there exists a solutianto

Lu = f(z,u) on, (4.5)
u=p 0nosl,

such that
(i) ue C=(Q),
(i) u_(z) <u(zr) <uy(z).

Proof. The general approach of the proof will be to construct a mam®sequencéu,, }
that is point-wise bounded above and below by our super- ahesslutions,u, and
u_. We will then apply elliptic regularity estimates and thez@la-Ascoli Theorem to

conclude that the sequenfe, } has aC>(2) limit « that is a solution to
Lu = f(z,u) on, (4.6)
u=p onos.

Given thatu_(z),u,(z) € C*(Q), the intervallmin u_(z), max, uy ()] C R* is
well-defined. We then restrict the domain of the functipmo the compact sek’ =
Q x [minu_(z), max, uy(z)]. Given thatf € C=(Q x R*), itis clearly inC>(Q x
[min u_(x), max; uy(x)]) and so the functiom‘%| IS continuous and attains a max-
imum on K. Denoting this maximum value by, let M/ = max{m, —inf g c(z)}.
Then consider the operator
Au = Lu + Mu,

and the function
F(z,t) = Mu+ f(z,t).
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Note that this choice o}/ ensures that'(x, t) is an increasing function ihon K and
that A is an invertible operator. Also, we clearly have the follogi

A(u) = F(z,u) <= Lu = f(z,u), 4.7)
Au_) < F(z,u_) <= L(u-) < f(z,u_), (4.8)
Aluy) 2 F(z,uy) <= L(uy) = fz,uy). (4.9)

The first step in the proof is to construct the sequengg iteratively. Letu, satisfy the
equation

A(up) = F(z,u_) on€, (4.10)
up =p 0nos2.

We observe that fou, v € H}(Q), the operator satisfies
Cullullfp @) < (Au,u),  and  (Au,v) < Jlullfp vl o),
where
(u,v) :/uvdx, and (Lu,v) = /(aiijuDiercuv)dx.
Q Q

Therefore the Lax-Milgram theorem implies that there es@stveak solution; € H'(12)
satisfyingu; — p € H}(Q). Given our assumptions df(x, t) andp, F'(z,uy) € H™(Q)
andp € H™(Q2) for all m € N. Therefore, by standard elliptic regularity arguments,
u; € H™(Q) for all m € N. This, the assumption th& is of C'*°-class and the assump-
tion thata, ¢, p € C°°(Q) imply thatu, € C*°(Q) andu; = p ond. Therefore, we

may iteratively define the sequenge;} ¢ C>(Q2) where
A(U]) = F([L’, uj—l) on(), (411)
u; =p onofd.

The next step is to verify that the sequereg} is a monotonic increasing sequence
satisfyingu_ < uy <--- < w;y <wu; <--- < ug. We prove this by induction. First
we observe that

Alu- —uy) < F(z,u_) — F(z,u_) =0 on{, (4.12)
(u- —u1)|on < 0.

Therefore, by the weak maximum principle, < u; on{Q2. Now suppose that; _; < u;.
Then

A(Uj — Uj+1) = F(JZ‘, uj—l) — F(JI,Uj) <0 on Q, (413)
(uj — uj1)|on = 0.

given thatF'(z, t) is an increasing function in the variabl@ndw,_; < ;. The weak
maximum principle again implies that; < u,,,, SO by induction we have thdt.,}
is monotonic increasing sequence that is point-wise batibééow byu_(z). Now we
show that our increasing sequence is point-wise boundeeediya:, () by proceeding
in a similar manner. Given that. < u, andu, is a super-solution, we have that

Aluy —uy) < Fzyu_) — F(z,uy) <0 onQ, (4.14)

(u1 — uy)|an < 0.



GENERALIZED SOLUTIONS TO SEMILINEAR ELLIPTIC PDE 21

The weak maximum principle implies that < «,. Now assume that; < u,. Then
A(ujy —uy) < Fz,uj) — Fz,up) <0 onf, (4.15)
(wjt1 — ut)|on <0,

given thatF'(z, ¢) is an increasing function and, < w.. So by induction the sequence
{u;} is a monotonic increasing sequence that is point-wise bediatove by, (x) and
point-wise bounded below by_(x).

Up to this point, we have constructed a monotonic increastogiencdu, } C C>(9)
such that for eachi, u; satisfies the Dirichlet problern (4]11) and is point-wise rided
below byu_ and above by., . The next step will be to apply the Arzela-Ascoli theorem

and a bootstrapping argument to conclude that this sequeEmeerges ta, € C*°(2).
We first show that it converges toc C(Q) by an application of the Arzela-Ascoli The-
orem. Clearly the family of functiongu; } is point-wise bounded, so it is only necessary
to establish the equicontinuity of the sequence. Givenehah function.; solves the

problem [[4.111), by standai elliptic regularity estimates (cf. [6]) we have that
[ujllwze < Clluslloe + [|F (2, wj-1) || v)-

The regularity of '(z,t) and the sequencéu;} along with the above estimate and
the compactness 6 x [inf u_, sup u,] imply that there exists a constait such that

| F'(z,u;—1)||lzr < N for all j. Therefore, ifp > 3, the above bound and the fact that
u_ < u; <uy imply that for eacly € N,

;1,00 < Clluflwzr < o0,

wherea = 1 — I% This implies that the sequende;} is equicontinuous. The Arzela-

Ascoli Theorem then implies that there exists @ C'(€2) and a subsequenge;, } such
thatw;, — w uniformly. Furthermore, due to the fact that the sequgngé is monotonic
increasing, we actually have that — u uniformly onQ. Once we have that; — u in

C'(2), we applyL? regularity theory again to conclude that
[uj = wklra0 SClluy — wellwes (4.16)
<C'(luy — wkllLe + [|1F' (2, uj—1) — F(z, up—1)| 10)-
Note that the above estimate follows from the fact that, — v, satisfies
A(uj —uy) = F(z,uj—1) — F(x,u,_1) ong, (4.17)

(Uj — uk)|aQ =0.

Given thatu; — w in C(Q), (4.16) implies that the sequen€e; } is a Cauchy sequence
in C1(Q2). The completeness @' (Q2) then implies that this subsequence has a limit
v € CYQ), and given that;; — wu in C(Q), it follows thatu = v. Similarly, by
repeating the above argument and using higher atd@stimates we have that

uj = k2,00 SC(|luy — urllwer) (4.18)
<C'(|u; — upllwrr + |F (2, uj—1) — F(z, up—1) lwrr),

whereu; — u in C1(Q) ask — oo. Again, [4.18), the regularity of’ and the fact that
u; — win C1(Q) imply that the sequenciy;} is Cauchy inC?(Q). A simple induction
argument then shows thate C>(9).

The final step of the proof is to show thais an actual solution to the problem (4.5).

It suffices to show that is a weak solution to the above problem. It is clear that
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p ondQ, so we only need to show thatsatisfies[(4)5) o). Fix v € H}(Q). Then
based on the definition of the sequedeg}, we have

/(CLUDJ'U]'DZ"U + MU]'U)dx = /(f(xvuj—l) + Muj_l)vdx‘
Q Q

As u; — u uniformly in C(2), we let letj — oo to conclude that

/(aiijuDiv + Muv)dz = /(f(x,u) + Mu)vdz.
0 0

Upon canceling the term involvingy/ from both sides, we find thatis a weak solution.
O

4.2. Outline of the Proof of Theorem[4.1. Now that the sub- and super-solution fixed-
point theorem is in place, we give an outline for how to prohedreni 4.11.

Step 1:Formulation of the problemWe phrase[(4]2) in a way that allows us to solve
a net of semilinear elliptic problems. We assume that thdficants of A and
boundary data have representativés’’), (), and(p.) in £,,(Q) satisfying the
assumptiond (411). Then for this particular choice of repngatives, we solve
the family of problems:

N N
Aue= = Dia?Dju)+» bul =0 inQ, (4.19)
ij=1 i

Ue = pe 0NN

Then we must ensure that the net of solutions € £,,(Q) and ensure that(4.1.9)
is satisfied for other representativesdfp, u.

Step 2:Determine>°-estimates and a net of generalized constant sub-solutods
super-solutionsWe determine constard,priori > bounds such that for a pos-
itive net of solutiongu.) of the semilinear problen (4.119), there exist constants
ai,as € R, C1,Cy > 0 independent of € (0, 1) such that

Cie" < a, <ue < B, < Cye™.

These estimates are constructed in such a way that foree#toh paira,, 5. are
sub- and super-solutions far (4]19).

Step 3:Apply fixed-point theorem to solve each semilinear probled.il9). Using the
sub- and super-solutions, 3., we apply Theoreiin 4.3 to obtain a net of solutions
(ue) € C>(Q).

Step 4:Verify that the net of solutiong:.) € £,,(Q). Here we show that the net of so-
lutions satisfies the necessary growth conditionsusing the growth conditions
on the sub- and super- solutions and Thedrem 3.1.

Step 5: Verify that the solution is well-definedDnce we've determined that the net of
solutions(u.) € &£y(), we conclude thaf(u.)] € G(Q) is a solution to the
Dirichlet problem[(4.2) by showing that the solution is ipgadent of the repre-
sentatives chosen. Note that most of the work for this stepdeae in Proposi-
tion[3.10.

We shall carry out the above steps in our proof of Thedrerm Seiction 6. We still
need to determine a net of sub- and super- solutioné far, (@Hixh we do in Sectionl5.
But before we move on to this and the other steps in the abdlie@uve briefly return to
the motivating probleni(1.11) by discussing how to embeddlpm with distributional
data intog (9).
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4.3. Embedding a Semilinear Elliptic PDE with Distributional Datainto G(Q). Now
that we have defined what it means to solve a differential sguan G(Q2), we are ready
to return to the problem discussed at the beginning of thempay/e are interested in
solving an elliptic, semilinear Dirichlet problem of thefio

N K
- Z Di(aiiju) + Z bu™ =0 inqQ, (4.20)
t,j=1 i=1
u=p 0nosl,

wherea® | b* andp are potentially distributional and; € Z for each:. If we can formu-
late this problem as a family of equations similar(to (4.18&n it can readily be solved
in G(Q) by Theoreni 4]1. The key to formulating our problem with silagdata as a net
of problems is Theoreimn 3.8.

Suppose thdd’ cc Q andQ is of C>°-class. For this choice 61, we can construct an
extension operatdf as in Theorer 317 and then use Theorerh 3.8 to define an embeddin
of /() into G(Q2), where we defined(Q) C D'(R) in sectior 3.B. If we are given a
problem of the form[(4.20) with dat&’, t*, p in 7'(§2), then we may use Theorém .8
to embed the coefficients’, b’ and p into G(Q2). We will denote a representative of
the image of each these terms@iiQ) by (%), (b°) and (p.). Then for a choice of
representatives, we obtain a net of problems of the forngij4.1

In order to solve this net of problems using Theoilem 4.1, wedrtbere to exist a
choice of representativés’ ), (b:) and(p.) that satisfy the conditions specified In (4.1).
While these conditions might seem exacting, this solutramework still admits a wide
range of interesting problems. This is evident when oneidens the following propo-
sition:

Proposition 4.4. Let{Y’ CC (2, where(2 is bounded and af*>-class, and defing”((2)
as in sectio 313. Let; € Z be a collection of integers far < ¢ < K and assume that
there existl <4, j < K such that; < 0 andn; > 0. Then assume that

ny = min{n; : n; <0}, and nx =max{n;: n; > 0}.

Suppose that/, b!, b5, p € C(Q) andb?, - -- ,b5~! € F/(Q). Additionally assume that
a¥ satisfies the symmetric, ellipticity condition amd- 0, b; < 0 andbx > 0in . Then
the problem

N K
— Y Di(a"Dju) + Y bu =0 inQ, (4.21)
i,j=1 i=1
u=p 0nokl,

admits a solution irG (12).

Proof. This follows from Proposition 318, Theordm #.1, Remjark 4@ the fact that
(a9 % ¢.), (br %), (b xd.) and(p* p.) converge uniformly ta®, b, b andp in Q. For
e sufficiently small, the corresponding problem (4.19¥ii§2) will satisfy the conditions
specified in[(4.11). Therefore, Theoréml4.1 and Rerhark 4.%ithe result. O

With the issue of solving (4.20) at least partially resolvee return to the task of
proving Theoremh 4]1. We begin by establishing s@pgiori L>°-bounds for a solution
to our semilinear problen (4.21) if the given data is smooth.
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5. SUB- AND SUPER-SOLUTION CONSTRUCTION AND ESTIMATES

Given an operatorl € A, with coefficients satisfyind (411), our solution strategy f
the Dirichlet problem(4]2) is to solve the family of problefd.19) and then establish the
necessary growth estimates. In order for this to be a viatdéegy, we first need to show
that (4.19) has a solution for eaele (0, 1). Given thatr; < 0 for somel < i < K, for
eache, we must restrict the operator

N K
A = =" Dy(a Dyuc) + Y b,
i,j=1 i=1
to a subset of functions i6*>(2) to guarantee that, is well-defined. In particular, for
eache we consider functions, € C*°(Q) such that < a. < u. < . < oo for some
choice ofa, andg,.. The first part of this section is dedicated to making judisiochoices
of a. andg, for eache such that a solution, to (4.19) exists that satisfies < u. < S..
Once a net of solution:, ) is determined, it is necessary to show thétif) € £,,(9),
then an operatod € A, whose coefficients satisfly (4.1) is well-defined for). Recall
that A is only a well defined operator for elementsc G(Q) satisfyingu, > Ce? for
e € (0,60) C (0,1), a € R and some constait independent of. This will require us

to establish certair-growth estimates oa,, which we do later in this section.

5.1. L* Bounds for the Semilinear Problem. We begin by determining the net af
priori boundsa, and 5. described above. For now we disregard ¢heotation. In the
following proposition we determina priori estimates for a weak solutiane H'(Q) to

a problem of the form

N K
1,5 =1
u=p onokl,

with certain conditions imposed on the coefficients and erpts. In particular, in the
following proposition we assume th@tC R" is connected, bounded, and@f°-class,
anda”, b, p € C(Q) with p > 0in Q.

Proposition 5.1. Suppose that the semilinear operator ({@1) has the property that
n; > 0 for somel < i < K. Letng be the largest positive exponent and suppose that
b (z) > 0in . Additionally, assume that one of the following two casddsio

(1) n; < 0 for somel < i < K and ifn; = min{n; : n; < 0}, (5.2)
thend' (z) < 0in Q.
(2)ngisoddand) < n; forall 1 <i < K. (5.3)

If case(5.2) holds, define

K
o) = sup {Zsup Vi(z)y™ <0 Yy e (O,C)} : (5.4)

cER4 i=1 zeN

a1 = min{a], mienan p(z)}. (5.5)
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If case(5.3) holds, define

K
Qly = sup Zsup V'(z)y™ <0 Yy € (—oo,c) ¢, (5.6)
ceR i—1 zeQ
ay = minfay, inf p(x)}. (5.7)
If case(5.2) or case(5.3) holds, define
K
g = inf {;;2% b (x)y™ >0 Vy e (c OO)} ; (5.8)
B = max{f’, sup p(z)}. (5.9)
€N

Under these assumptions and definitions, if d@s8) holds andu € H'(() is a positive
weak solution to Eq(5.1), then0 < a; < u < 3 < co. Otherwise, if cas€5.3) holds
andu € H(Q) is a weak solution to E¢5.T), then—co < an < u < 8 < oo.

Remark 5.2. We observe that Eq5.1) does not have a well-defined weak formulation
for arbitrary v € H'(Q). The way to interpret Proposition 5.1 is that if we seek a
positive solution: € H'(Q2) that weakly solves Eq¢5.1) and satisfies conditio(E.2),
then we only need to look for solutions #'(Q) N [y, 3], where[ay, 3] denotes the
L>(Q) interval of functions: sucha; < u < /3 a.e. Similarly, we only need to look for
u € H'(Q) N [ag, A] if condition (5.3) holds.

Remark 5.3. Note that for the purposes of proving Theolien 4.1, we aregmilyncon-
cerned with cas€b.2). This is the case that we will focus on for the remainder of the
paper. However, with a little extra work we could very eagiéneralize Theorem 4.1 to
allow forn; > 0 forall 1 < ¢ < K andng > 0 odd. Then we could use cae3)to
establish the necessary bounds.

Proof. We first note that in all cases;, a, and/ are well-defined given the conditions
onb!(z) andb® (z) and the exponents; for 1 < i < K. In particular, the assumption
thatd!(z) < 0in (5.2) ensures that, is well-defined and the assumption that is odd
andn; > 0 ensures that, is well-defined.

Based on the definitions af,, o, and 3, if u is a solution to[(5]1) (we assumeis
nonnegative in the case 6f(b.2)), then it is easy to verify the functions, = (u— )"
andg, = (u— o)~ are inHy(9) if (5.2) holds andp, = (u — a3)~ andg, = (u — 8)*
are inH} (Q) if (5:3) holds. Indeed, we may write = v + up, whereu, € H () and
we have that

0<¢=@u—-0)"=w+up—B)"<(up—0)"+ud (5.10)

0>¢ =(u—a)” =(u+up—ai) > (up—a) +ug. (5.11)
Taking the trace of Eqs[(5.110) arid (5.11) and using the dieinof o, and 3 we find
that ¢ and¢, are in H (). By applying a similar argument we can conclude that
b, € Hy(Q).

Define the set
Y= {x €Q|u> B}
if case [5.2) orl(5.3) holds. If cade (b.2) holds, let
YV, ={z€Q]0<u<m},
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and if casel(5.3) holds, let
V,={z€Q|u<as}.
Thenifu € H'(Q)" is a weak solution td(5l1), supp( = Y,. Similarly, if u € H'(Q)

is a weak solution td (511), then sugp) = suppf,) = Y and suppg,) = ,.
We have the following string of inequalities for if condition (5.2) holds:

Collé, ey < 1V (1 — @) ) 2agey (5.12)
< / 0¥ Dy (1 — ) )D;((u— 0)") di

_ /Q 0" D;(u — ) D;((u — a)7) da

= /y (— Zb’(m)u"l)(u —a) dz < 0.

S =1
We can make a similar argument to show thaf| 1) = 0 if condition (5.3) holds.
We also have the following string of inequalities for= ¢, = ¢, if either condition

(5.2) or [5.3) holds:
CollpllF 0y < CLllV((u = B) )72 (5.13)

< /Qaiij’((u = B)")Di((u—B)") dx
— /Qaiij(u — B)Dz((u - 6)+) dx

K

= [ 3o pe - g dr <o

=1
The above inequalities imply the result. OJ

Now that we've established*>-bounds for solutions td_(5.1), we can apply these
bounds for each fixedto determine a net of bounds for the following net of problems

N K
—> Dia?Djuc+ Y buk =0 inQ (5.14)
i i=1
Ue = pe  0NOSY,

where(a”), (b)), (p.) € Ea () satisfy the following for alk < 1:
a? =al',  a"&& > NJE|P > Cre ¢ (5.15)
a7 |kacss [Blkan < Ake < Ca(k)e™ ™, VE € N
bl < —Cse®, {n;:n; <0} #0, ny=min{n;:n; <0}
bE > Cue™, {n;:n; >0} #0, nxg =max{n; :n; >0}
pe > Cse™,

andC1, - - - , C5 are positive constants that are independentarida,,--- ,a; € R are
independent of. Then notatiorC, (k) anday (k) is meant to indicate that these constants
may depend of.
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Proposition 5.4. Suppose that for each fixede (0, 1], u. is a positive solution t¢5.14)
with coefficients satisfyinb.158) Then there exist.>°-boundsa,. and 3, such that for
eache, 0 < a, < u, < G..

Proof. For each fixed, if the assumptions i (5.15) hold, then case](5.2) of Propo-
sition[5.1 is satisfied. Therefore, for eaelke (0, 1], there existsy, and . such that
0 < a. <ue < pBe. O

5.2. Sub- and Super-Solutions.In the previous section we showed that if the data of
(5.12) satisfies[(5.15) and if. € C>=(Q2) solves [5.1¥) for each, then0 < o, <

ue < B.. Now, for eache € (0, 1], we want to show that there actually exists a solution
u. € C*(Q) satisfyingd < a. < u, < .. The key to proving this result lies in the fact
thata, andg, are sub- and super-solutionsfto (5.14) for each

Proposition 5.5. Suppose that the coefficients in the net of probi@is!)satisfy(5.15)
Then there exists a ndt,.) € (C(Q))’ such that for each, . solves(5.14) and
0 < a, < u. < B, wherea, and . be the bounds established in Proposition 5.4. .

Proof. To solve the above family of problems in_(5114), we show that net of L>°-
boundg«.) and(5,) found in Propositioh 514 is a net of sub and super-solutio&.iL4).
We then apply Theorein_4.3 to conclude that for eacthere exists a solution, €
C>=(Q).

Fix e and leta! andg! be defined by((5]4) an@ (5.8) respectively, and let

o . ;7 .
a. = min{a, lal}zf pe(T)},

Be = max{f, sup pc(x)}.
€N

The conditions in Eq. [(5.15) and the fact that> 0 imply thata, > 0. Then the
definition of o, implies that

K K
A = Z b (o)™ < Zsup b ()™ <0, (5.16)
i=1 i=1 TEQ
<
< jaf p(a) < .

which shows thaty, is sub-solution for each. Similarly, the conditions in Eq.[(5.15)
and the definition of! imply that

EE:lf n~

Be = sup pe > pe,
e

inf b (3.)™ >0, (5.17)

zeQ

Mw

=1

which shows thag, is a super-solution for each
What remains is to show that that < 3.. Given the definition ofr. andg,, it suffices
to show thaty. < j3!. Define

igﬂg{z sup b'(x)d™ >0 Vd € (¢,00)}.

i—1 T€EQ



28 M. HOLST AND C. MEIER

Then we have that. < ~. by the definition ofo.. Furthermore, for a fixed, given the
assumptions ot (z),

K K
Z inf b’ (x)y™ < Z sup bi(x)y™, Yy €R.

i—1 v€Q i=1 €Q

Therefore the definition of! and the above inequality clearly imply that< /. There-
fore o/ < 5/ and the intervala,, .| is a nonempty subset &*. For each € (0, 1], the
hypotheses of Theorelm 4.3 are satisfied for the elliptic lprod5.1%), so we may con-
clude that there exists a net of solutiqas) € (C>°(Q))! that satisfy0 < a. < u, < 3
for each fixedk. O

The final task in this section is to show that an operatoe A,, with coefficients

satisfying [(5.15), is a well-defined operator on any elemeat,,(2) satisfying
ae <ue <. Vee (0,1].
Recall that in Sectioh 3.4 we determined thiats only well-defined for invertible, €

G(Q). Therefore, it suffices to show thét.), (5.) and(3-), (3-) are generalized con-
stants[(3.8), which we verify in the following lemma.

Lemma5.6.Let(«.) and(5.) be the net of sub- and super-solutionggdl4)determined
in Section 5.1. Suppose that the coefficient@af4)satisfy(5.15) Then(«.), (ﬁe)'(i)'
and(3-) are inC, the ring of generalized constants.

Remark 5.7. Note that if(-) € C, then this implies that there exists apn € (0,1),
some constan®’ independent of anda € R such that, > Ce® forall € € (0, ¢y). Then
if (uc) € Em(Q) satisfiesn, < u. < G for eache, (5-) € Cimplies thatu = [(u.)] is
invertible inG(Q). See Sectidn 3.4 arjd] for more details.

Proof. We need to show that there exists constan{sD, independent ot ande, €
(0, 1) such that for alk € (0, ¢),

a. > Dy for someb; € R,

B. < Dqe” for someb, € R.

So it is necessary to verify that there exists constantand D, so that fore sufficiently
small

ol > D, and inf p > Die™,
€N

Bl < Dy, and sup p. < Doe.
€N

Given that(p.) € £,/(Q),

sup pe < sup p. = O(€"),

€N zeQ
for someb € R. This and the assumption @p.) in (5.18) imply that we only need to
obtain the necessarybounds oy andf..

For now, drop the notation and consider’ defined in[(5.4). For a given functigh
define
7, = sup {f(b) <0 Vbe (0,c)}.

ceER4
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Given that
K
o/ = sup Zsup bi(z)y™ <0 Yy € (0,¢)p,
ceERy i=1 z€Q
it is clear that for another functiofi(y) such that

K
fly) =) supdi(z)y™ on(0,c),

i=1 T€Q
if oF is defined and¥’ € (0, ¢), it must hold thatlf < . LetCy = |{n; : n;, > 0}
andCy = [{n; : n; < 0} and ifCy > 1, letn;, = min{n; : ny < n; < 0}. Note that
C1,Cy > 1 based on the assumptions(in (5.15). Then recallinghifia) < 0, by (x) > 0
correspond to the coefficients of the terms with the smatlegative and largest positive
exponent ofy" 1 b (x)u™, if sup,.g |[b(x)| < A for eachi, the following must hold for
y € (0,1):

K
Z sup b’ (z)y™ < sup by (2)y™ + C1A + (Cy — 1)Ay™=. (5.18)

i=1 z€Q z€Q

Define

- ()™

if Cy > 1andletd =1if C; = 1. Then letc = min{1, d}. The definition ofc implies
that

sb
(Cy — DAy < —SPactl1lT)

2 )
forall y € (0,c¢). So fory € (0, ¢),
K
. gb
Z sup b’ (x)y" < Sllpze—;zl(x)ym + CiA = f(y).
i=1 z€Q

Thenifa’ € (0,¢), o/ > o Given thatf(y) is a monotone increasing function @&,
or is the lone positive root of (y). Thus,

(—sup,ghi(@)\ T
T = 20, A ’

which implies that ifo’ € (0, ¢),
o (mswabi@))
- 2C1A
Similarly, for a fixede € (0, 1), define
o _ (=supsen(bl@))
‘ 2(Cy — 1A,

if Cy > 1andletd. = 1if Cy, = 1. Letc. = min{1,d.}. Then fory € (0, c.), we have
that

Y

Supxeﬁ bi ([E’) ni

(CZ - 1)Aeyni2 S - 9
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So the above arguments imply thatif € (0, ¢.), thena > Vs and

1
d>(ﬂwMﬁuwng
T 201 A,

Given the assumptions @ (z) and A, in (5.I8), in this case we have that > C'* for
some constant’ > 0, a € R ande sufficiently small. Now we must show that > C'e®
for some constant’ > 0, a € R ande sufficiently small in the event that. ¢ (0, c.).
It suffices to show thai, > C'¢® in the event thal; > 1. But clearly, fore sufficiently

small 1
o SuprQ bl( ) Mg T > a
dE—( —(Cg—l)Ae Ce*,

given the assumptions di and A, in (5.15). Thereforey’ > D,e® for some constant
Dy > 0, a € R ande sufficiently small.

Now we determine bounds on the rigf). Again, we temporarily drop theand only
considers’. Recall that

K
! — inf inf b (z)y >0 Yy € (c, .
3 i&{;iﬁa (x)y™ >0 Yy € (c OO)}

For a given functiory(y), define
7y = inf {£(8) 20 Vb€ (¢,00)}.

Then if f(y) < S°F, sup,q b (z)y™ on some intervalc, co) and 3’ € (¢, 00), it must
holdthaty, > j'if 7, is defined. Let’;, C; be as before and let, = max{n; : 0 < n; < ng}
if C; > 1. |fy>1 then

j£:1nfbl Yy > inf (by (x))y™s — (Cy — 1)Ay™ — ChHA.

e e

i=1
d_(z@a—nA)wVﬁ
inf 5(bk (7))

if C; > 1landletd = 1if C; = 1. Lete = max{1, d}. Then our choice of ensures that
if C, > 1, then

Now define

—(Ch = DAy™ > _infxeﬁ(bK(x))y”K
- 2 )
and that fory € (c, 00),
K :
, - inf 5(bk(x)) ,
> suptely > Sy - Con = 1),
=1 T€EQ

Soif 8" € (¢,00), B’ <7;, wherey, is the lone positive root of onR, given thatf is
monotone increasing on this interval. S@ife (¢, 00),

, 20, A i
PEar= (infmeg(bK(l"))) '

d. = (12(01;1)/\;) e , and c¢.=max{l,d.}, (5.19)

'nfmeﬁ bg( ([L’

By defining
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and applying the above argument féirto the net(3!) for each fixed, it is clear that if

Bl € (¢, 0), then
, 20,A, | K
</ < a
Pe= <infmeg bf(x)) =0

given the assumptions @t andA, in (5.15).

Now assume that! ¢ (c., o). Then it suffices to show that@; > 1, thend, < C'e*
for e sufficiently small and some positive constantsaanda € R. But again, this is
clearly true given the assumptions (3.15) and the fact that

. <2<ol - 1>AE) e

inf eq bt ()

6. PROOF OF THEMAIN RESULTS

We now prove Theorem 4.1 using the results from Section 5claoity, we break the
proof up into the steps outlined in Sectionl4.2.

6.1. Proof of Theorem[4.1.

Proof. Step 1: Formulation of the problenf-or convenience, we restate the problem and
the formulation that we will use to find a solution. Given arermorA_e Ao,
defined by((3.24), we want to solve the following Dirichlebplem inG(2):

Au =0 in, (6.1)
u=p 0onos.

We phrase[(6]1) in a way that allows us to solve a net of seealimlliptic
problems. We assume that the coefficientsi@nd boundary data have repre-
sentativega®), (b°), and(p.) in £,(Q) satisfying the assumptions (4.1). Then
for this particular choice of representatives, our stratieg solving (6.1) is to
solve the family of problems

N N
Aue ==Y Di(a?Dju) + Y bk =0inQ, (6.2)
ij=1 i
Ue = pe  0NOSY,
and then show that the net of solutigias) € £,,(9).

Step 2:Determinel*>-estimates and a net of sub-solutions and super-solutionSec-
tion[H, we concluded that for eaehthe paira, and,. determine sub- and super-
solutions to[(6.2) such tha&t < o, < S3.. Furthermore, in Lemmia 5.6 we con-
cluded that there exist;,(C> > 0 anda;,a> € R such that fore sufficiently
small, the netga.) and(5,) satisfyCie™ < a, < . < Cye2, thereby verifying
that(a.), (), (3-), (5-) € C, the ring of generalized constants.

Step 3:Apply fixed-point theorem to solve each semilinear proble@.il9) This fol-
lows from Proposition 515. We briefly reiterate the proofenae simply verify
the hypotheses of Theoréem#.3. For each fixeg have sub- and super-solutions
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a. and 3, satisfyingd < a. < 3. anda¥, i, p. € C=(Q) satisfying [5.1b). Fi-

€ ) 7€)

nally, €2 is of C*°-class and the function
Zb’ )y e C=(Q x RY),

so we may apply Theorelm 4.3 to conclude that there existsaf setutions(«.)
to (5.13) satisfying < a, < u, < f..

Step 4: Verify that the net of solution@:.) € £,,(£2). Now that it is clear that a solution
exists for [5.14) for each € (0, 1], it is necessary to establish estimates that
show that the net of solutiorig, ) is in £,,(Q2). That is, we want to show that for
eachk € N and all multi-indicesf| < k, there exista € R such that

suB{|DBuE(x)|} = O(e).

z€Q

By standard interpolation inequalities, it suffices to shibat for~ € (0,1) and
eachk € N, there exists an € R such that

|Uel k0 = O(e”).
By Theoreni 3.11, we have thatif is a solution to[(5.14) with coefficients satis-

fying (5.15), then
A\® Ko
e <€ (5) Quhon +lpesn + Y10 o). (69
€ i=1
Observe that
|ul [ucloaludog ! (6.4)
if n; > 0and
_ . 1 i
[u loqa < |uf o0 + |_T2(_ni>[ue]0ﬁ;ﬂ‘ue 002 g (6.5)
0;92
if n; < 0. The above inequality implies that
A 3
o < € (r) (o + oz 6.6

+Z|b |O’yQ Cl aeaﬁ&anz)+02(n27a5765)|u5|0’yﬂ))

where

Ci(ng, ae, B) = B and Cy(ny, ae, f) = n;f™ ", if n; >0 and

(—ng) B

—2n,;
€

Cl(nia O, 56) =a and CZ(nia O, 65) -

Application of the interpolation inequality

[teloqy < C(0 fuelo + deluelzy),
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whered, is arbitrarily small and”' is independent af,, implies that

AN
[ue20 < C ()\_> (|telos + [pel2:0 (6.7)

+Z|b |0'yQ Cl nzaasaﬁs)

+ 02(7%7 e, Be)(C(6, € 1|u6|0;9 + 5E|ue|2mﬂ))))'
Therefore,

A\ o=
<1 - 56 ()\_5) Z |bi(x)|0,y;902(nia e, 65)) |u5|2,'y;Q (68)

1=1

A 3
< C <)\—E> (|UE|O;Q + |p5|2,’Y§Q

€

K
+ Z ‘bi(x>|0,7;9<01(ni7 A, ﬁé) + C2<ni7 e, /66)56_1|u6|0;9))'
i=1
But given the assumptions ok, \., the bounds previously established for the

nets(a.) and(,) in Lemmas.6, and given thadb! (z)) € £,,(Q), there exists
€0 € (0,1),a € RandC > 0 such that for alk € (0, ¢),

( ) Z |b |0'yC2 nzaasaﬂe) < Ce.

Therefore, choosing

1
66 = a0
2C e
itis clear that fore € (0, ),
A 3
a0 < O <r) (o + ol 69

+ Z |b |O—yQ Cl nlaamﬁﬁ) + 02(77470457567 )|ue|O;Q))-

Given that(a,), (8.) € C, a. < u. < . and(p,), (b') € Eu(Q), the above
inequality implies that for some € R,

[Uel230 = O().
Now we need to utilize the-growth conditions oru.|- . and induction to show
that for anyk > 2 that

|te|kni0 = O(e*)  for somea € R. (6.10)

Let (u.) be a smooth net of solutions {0 (6.2) and additionally asstinaie[6.10)
holds for allj < k. Letr be a multi-index of lengtlk — 1. Then by differentiating
both sides oﬂIE]Z) we see that for eacla satisfies the Dirichlet problem

ZD” (a“ Dju,)) = ZD” (b'u™) in Q (6.11)

2,7=1

DY E:D”,oE onof).
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Rearranging the above equation and applying the multixrgteduct rule we

find that
Z 0 Dy (D u,) = Z D”((D;a?)(Djuy)) (6.12)
i,j=1 i,j=1

DIPIELRL NS

i,0=1oc+p=v
oFv

DY ,M,<D“bl><D0<<ue>m».

i=1 o+pu=v

Therefore, we may apply Theorém3.1[to (6.12) to concludeftinan arbitrary
multi-indexv such thaty| = k — 1,

A
‘Dyueb,wgﬂ < C ()\_) (|Dyue‘0;Q + ‘Dypeb,“/;ﬂ (613)
N
+1 D"((Dia?)(Dyu))loa
ij—l

- Z Z . |D”a]|om|D Dijuclo0

i,0=1oc+p=v

oFV
+Z Z ‘D bZ‘OWQ‘D (( )i)‘OmQ)
i=1 odp=v
A 3
<c (y) (1Duelos + 1D s
+Z Z U|M||DHDCLZJ>|079|D (D uﬁ)|0’79
i,j=10+pu=v
T Z Z |Dua”|0'yQ|D Dijuclo 0
i,0=10c+p=v
oFV
5 > S ID HlonalD () o)
i=1 o4+p=v

By our inductive hypothesis and the assumptions on the caeits, it is imme-
diate that every term in the above expressiof?{s*) for somea € R except for

the last term. So to show

|D"uc|2q:0 = O(e”)  for somea € R,

it suffices to show that

Z > o ,|D Velose D7 ()™ oy

i=1 o4+p=v

= O(e*) forsomea € R.
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Given that)! € £,,(Q) for eachl <i < K,
|DMbi|g.0 = O(*)  for somea € R.

Therefore, itis really only necessary to show that for anjtiamdex o, such that
lo| = 7 <k — 1, that there exists am € R such that

[D7((ue)") o0 = O(€).
But observe thab?((u.)™) is a sum of terms of the form
(ue)™ "D ue DU - - - D™,

whereo| + o5+ - - -0, = o andm < j < k— 1. This follows immediately from
the chain rule. Therefore we have the following bound:

D7 ((ue)" oy < (/n’i)|(uﬁ)ni_l|077§Q|DUUE|O,V§Q (6.14)
o!
- i P — 1 . n;—2 .
O LR (A
: |D01UE‘O,V;Q|DU2UE‘O77;Q + A
o!
+ Z ———— (i) (n; — 1)

orlog!- -0l
o1+02+:+0;=0 =2 J

e (ng — j)|(ue)m_j|0,7;Q‘Dolue|0,'y;9
- | D% om0
Using (6.4) and[(6]5), for eactn < j we may bound the terms of the form
|(2e)™ ™ 0.4:0 USING|uc|o .0, a. @and BL. Then our inductive hypothesis and the
growth conditions orje.) and(/5.) imply that
[ D7 ((ue)™)
This implies that

0.0 = O(e”) forsomea € R

| D" |20 = O(e”)  for somea € R.
As v was an arbitrary multi-index such thiagd = & — 1, this implies there exists
a € R such that
|Uel k1,70 = O(e").
Therefore(u.) € £x/(Q).

Step 5:Verify that the solution is well-definedPropositior 3.10 and the definition of
the Dirichlet problem ing(2) given in Sectiom 315 imply thdtu.)] is indeed a
solution to the problem

Au=0 inQ, (6.15)
u=p 0onosl,

in G(Q). To see this, we consider other representatizés, (l_)i), (p.), and(@,)
of [(a?)], [(b))], [(pc)], and[(u,)]. Then the proof of Propositidn 3110 clearly

implies that
N K
— > Di(@' D) + > b.(m)" =1 inQ, (6.16)
i,j=1 i=1
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wheren. € N (Q) and7, is a net of functions satisfying (3.25). But this implies
that this choice of representatives also satisfies (6.15)§h), so our solution
[(ue)] is independent of the representatives used.

0]

This completes our proof of Theordm ¥.1. We now conclude kingia brief sum-
mary and making some final remarks.

7. SUMMARY AND REMARKS

We began the paper with an example to motivate the Colombé&gbra method for
solving the target semilinear problem (1.11) with potdhtidistributional data. In par-
ticular, in Section 2 we proved the existence of a solutioa simpler ill-posed critical
exponent probleni (1.12) in Proposition]2.4. Our proof téghe consisted of mollifying
the data of the original problem, and then solving a sequeh¢approximate” prob-
lems with the smooth coefficients. We then obtained a sequefrsnlutions that yielded
a convergent subsequence. This proof framework, whichinedjwnly basic elliptic
PDE theory, was modeled on the more general Colombeau aghptioat we then subse-
guently developed and applied in the remainder of the papsolive the more difficult
problem [(1.111). Following the approach of Mitrovic and palvic in [18], in Section B
we stated a number of preliminary results and developedsseacg technical tools for
solving (1.11). Among these tools and results were the eixglipriori estimates found
in [18], and a description of the Colombeau framework in atttee coefficients and data
were embedded. In particular, in Sectfonl 3.1 we introducgdtion for Holder norms
and stated twa priori estimates from [6] that were made more precise by Mitrovit an
Pilipovic in [18]. In Sectiof 32, we then introduced the geal framework for con-
structing Colombeau-type algebras and the ColombeaurageR) used in this paper.

We then stated the main result in Sectidn 4, namely Theardinaéd also gave a
statement and proof of the method of sub- and super solui®ifheorerh 413. We then
gave a detailed outlined of the plan of the proof of Thedrefi the execution of which
was the focus of the remainder of the paper. In Sedtioh 4.3lseediscussed methods
to embed[(1.11) into the algebra for applying our Colombesdstence theory. The
remainder of the paper was then dedicated to developingethaining tools necessary
to proving Theoremi 411, and then carrying out the proof. lati®a[8 we determina
priori L bounds of solutions to our semilinear problem and a net of and super-
solutions satisfying explick-growth estimates. We first determined a neL&f bounds
for positive solutions to our problem. In Section]5.2 we tebowed that this net af>
bounds is in fact a net of sub- and super-solutions contamé&gthe ring of generalized
constants described in Sectlon]3.2. Finally, after devefppub- and super-solutions and
some related results in Sectiioh 5, we proved the main reBudtoreni 4.11 in Sectidn 6,
following the plan we had laid out in Sectibh 4.

We note that although the problem we set up in a manner sitoitaat used by Mitro-
vic and Pilipovic in [18], our approach to solving our semdar problem was distinct
from theirs; we first determined a net of solutiqns) to the family of semilinear prob-
lems [6.2) by using the method of sub-and super-solutiohsediieni 4.3), and our net
of sub- and super-solutions determined in Sedtioh 5.2. @ueceanet of solutions was
determined, we then employed Theoréms 3.1 and our net ofasubsuper-solutions to
show that our net of solutions was containedin(Q).

In this article we have attempted to develop some basic tooldlow for a more
general study of the Einstein constraint equations wittribigtional data. Our goal was
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to extend the current solution theory for scalar, criticgb@ent semilinear problems
such as the Lichnerowicz equation, allowing for more irtegualata than is currently
covered by the existing solutions theories (cf/[9, 10] feuaamary of the known results
for the CMC, near-CMC, and Far-CMC cases through 2009). Asxastep, we hope to
use the tools developed in this article to extend the neaGGMd Far-CMC existence
framework for rough metrics developed in [9, 15] 16, 3] toexe rough data example
studied by Maxwell in[[1]7].
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