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GENERALIZED SOLUTIONS TO SEMILINEAR ELLIPTIC PDE
WITH APPLICATIONS TO THE LICHNEROWICZ EQUATION

MICHAEL HOLST AND CALEB MEIER

ABSTRACT. In this article we investigate the existence of a solution to a semilinear,
elliptic, partial differential equation with distributional coefficients and data. The prob-
lem we consider is a generalization of the Lichnerowicz equation that one encounters
in studying the constraint equations in general relativity. Our method for solving this
problem consists of solving a net of regularized, semilinear problems with data obtained
by smoothing the original, distributional coefficients. Inorder to solve these regularized
problems, we developa priori L∞-bounds and sub- and super-solutions and then apply
a fixed-point argument for order-preserving maps. We then show that the net of solutions
obtained through this process satisfies certain decay estimates by determining estimates
for the sub- and super-solutions and by utilizing classical, a priori elliptic estimates.
The estimates for this net of solutions allow us to regard this collection of functions as a
solution in a Colombeau-type algebra. We motivate this Colombeau algebra framework
by first solving an ill-posed critical exponent problem. To solve this ill-posed problem,
we use a collection of smooth, “approximating” problems andthen use the resulting
sequence of solutions and a compactness argument to obtain asolution to the original
problem. This approach is modeled after the more general Colombeau framework that
we develop, and it conveys the potential that solutions in these abstract spaces have for
obtaining classical solutions to ill-posed nonlinear problems with irregular data.
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1. INTRODUCTION

The goal of this paper is to develop a framework to extend the rough solution the-
ory for the conformally rescaled Einstein constraint equations when the mean curvature
is constant. In the event that the mean curvature is constant, the conformally rescaled
constraint equations decouple, leaving only a semilinear elliptic equation to solve. In
attempting to extend the rough solution theory in this case,one is confronted with the
problem of solving a semilinear elliptic equation with distributional coefficients. If these
coefficients do not lie in certain Sobolev spaces with somewhat exacting restrictions on
their indices, the resulting elliptic problem will not be well-defined in the normal weak
sense. In an effort to circumvent these restrictions on the Sobolev classes of our coeffi-
cients, we develop a method to reformulate the ill-posed, semilinear PDE with singular
coefficients as a PDE in what is known as a Colombeau algebra. These Colombeau al-
gebras contain the space of distributions via an embedding,so one solves the PDE in
the Colombeau algebra and attempts to associate the generalized Colombeau solution
with a distribution, thereby obtaining a distributional solution to the original ill-defined
problem.

1.1. The Einstein Constraint Equations and Conformal Method. The Einstein field
equationGµν = κTµν can be formulated as an initial value (or Cauchy) problem where
the initial data consists of a Riemannian metricĝab and a symmetric tensor̂kab on a
specified3-dimensional manifoldM [8, 20]. However, one is not able to freely specify
such initial data. Like Maxwell’s equations, the initial data ĝab and k̂ab must satisfy
constraint equations, where the constraints take the form

R̂ + k̂abk̂ab + k̂2 = 2κρ̂, (1.1)

D̂bk̂
ab − D̂ak̂ = κĵa. (1.2)

Here R̂ andD̂ are the scalar curvature and covariant derivative associated with ĝab, k̂
is the trace of̂kab and ρ̂ and ĵa are matter terms obtained by contractingTµν with a
vector field normal toM. As the Cauchy formulation of the Einstein field equations is
one of the most important means of modeling and studying astrophysical phenomena,
knowledge of the constraint equations is very important because of the influence that
solutions to these equations has on solutions to the evolution problem. Moreover, a
number of central questions in general relativity are addressed entirely through the study
of the constraint equations alone (cf. [2] for discussion).

Equation (1.1) is known as the Hamiltonian constraint while(1.2) is known as the
momentum constraint, and collectively the two expressionsare known as the Einstein
constraint equations. These equations form an underdetermined system of four equa-
tions to be solved for twelve unknownsĝab andk̂ab. In order to transform the constraint
equations into a determined system, one divides the unknowns into freely specifiable data
and determined data by using what is known as the conformal method. In this method
introduced by Lichnerowicz [14] and York [21], we assume that the metricĝab is known
up to a conformal factor and that the tracek̂ and a term proportional to a trace-free
divergence-free part of̂kab is known. Therefore the determined data in this formulation
of the constraints is the conformal factorφ and a vector fieldw whose symmetrized
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derivative represents the undetermined portion ofk̂ab. One obtains the following system

− 8∆φ+Rφ+
2

3
τ 2φ5 − [σab + (Lw)ab][σ

ab + (Lw)ab]φ−7 − 2κρφ−3 = 0, (1.3)

−Db(Lw)ab +
2

3
Daτφ6 + κja = 0, (1.4)

which forms a determined, coupled nonlinear system of elliptic equations that is referred
to as the conformal, transverse, traceless (CTT) formulation of the constraints.

In equations (1.3)-(1.4) the quantitiesgab, σab, τ , ρ, ja are freely specified and satisfy

ĝab = φ4gab, k̂ab = φ−10[σab + (Lw)ab] +
1

3
φ−4τgab, (1.5)

ĵa = φ−10ja, ρ̂ = φ−8ρ, (1.6)

and∆,L, D andR are the Laplace-Beltrami operator, conformal Killing operator, co-
variant derivative and scalar curvature associated withgab. For a given choice ofgab, σab,
τ, ρ, ja, if one can solve (1.3)-(1.4) forφ andw, they obtain a solution to the constraint
equations (1.1)-(1.2) by using Eq. (1.5) to reconstruct thephysical solutionŝgab andk̂ab.

1.2. Solution Theory for the CTT Formulation. The solution theory for the CTT for-
mulation of the Einstein constraint equations on a closed manifold M can be roughly
classified according to the Yamabe class of the given metricgab, the properties ofτ (the
mean extrinsic curvature) and the regularity of the specified data(gab, τ, σ, ρ, j). The
mean curvature plays perhaps the largest role. If the mean curvature is constant, then the
analysis of the conformal formulation simplifies greatly because the Hamiltonian con-
straint and the momentum constraint decouple, leaving a single semilinear elliptic PDE
to analyze. ForC2 metrics, the classical solution theory for the conformal formulation
with constant mean curvature (CMC) is now understood for allthree Yamabe classes, and
is summarized in [12]. The solution theory for low-regularity data(gab, τ, σ, ρ, j), or so-
called “rough solution theory”, is also well developed in the CMC case. The most com-
plete rough solution theory to date appears in [10], and allows for metricsgab ∈ W s,p,
with any pairs, p satisfyings > 3

p
and specified dataσ, ρ, j satisfying

• σ ∈ W e−1,q, (1.7)

• ρ ∈ W s−2,p,

• j ∈ We−2,q,

whereq ande satisfy

•
1

q
∈ (0, 1) ∩ [

3− p

3p
,
3 + p

3p
] ∩ [

1− d

3
,
3 + sp

6p
), (1.8)

• e ∈ [1,∞) ∩ [s− 1, s] ∩ [
3

q
+ d− 1,

3

q
+ d] ∩ (

3

q
+
d

2
,∞),

with d = s− p. There are also some additional assumptions on the Yamabe class ofgab
and the sign ofσ, ρ andj. (cf. [3, 15, 16, 9, 10]).

1.3. Rough Solutions to the Constraint Equations.There is an incentive to develop a
low regularity solution framework for the Einstein field equations to model plausible as-
tronomical phenomena such as cosmic strings and gravitational waves [7]. The solutions
to the constraint equations not only place a restriction on which metrics and extrinsic
curvature tensors can be considered as initial data, but they also determine the function
spaces of maximally globally hyperbolic solutions to the evolution problem [2]. The
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solution theory for the constraint equations must therefore keep pace with the theory
for the evolution equations, in order to avoid limiting the further theoretical develop-
ment of the theory for the evolution problem. Historically,the rough solution theory
of the constraints has in fact lagged behind that of the evolution problem. The local
well-posedness result for quasilinear hyperbolic systemsin [11] allows for initial data
(g,K) in Hs × Hs−1 for s > 5

2
; however it was not until [3, 15, 16] that solutions of

this regularity existed to the constraint equations, and even these initial results were re-
stricted to CMC solutions. Low regularity solutions becameincreasingly important when
Klainerman and Rodnianski developeda priori estimates in [13] for the time existence
of solutions to the vacuum Einstein equations in terms of theHs−1 × Hs−1 norm of
(Dg,K), again withs > 2. This prompted Maxwell’s work on the CMC case in [15]
and [16], Choquet-Bruhat’s work on the CMC case in [3], and Holst’s et al.’s work on
both the CMC and non-CMC cases in [9, 10].

One of the difficulties associated with obtaining rough solutions to the conformal for-
mulation is that in general, Sobolev spaces are not closed under multiplication. With the
exception of the Banach spacesW s,p(M) with s > d/p (whered is the spatial dimen-
sion), the product of two Sobolev functions in a given space will not in general lie in
that space. This restriction is a by-product of a more general problem, which is that in
general, there is no well-behaved definition of distributional multiplication that allows
for the multiplication of arbitrary distributions. One is instead confined to work with
subspaces such as Sobolev spaces where point-wise multiplication is only well-defined
for certain choices of Sobolev indices. This greatly limitsthe Sobolev spaces that one
considers when attempting to develop a weak formulation of agiven elliptic partial dif-
ferential equation, and in particular, places a restriction on the regularity of the specified
data(gab, τ, σ, ρ, j) of the CTT equations.

In order to overcome these limitations, we developed a framework to solve semilinear
elliptic problems similar to the Hamiltonian constraint ingeneralized function spaces
known as Colombeau algebras. This work is a natural extension of the work done by
Mitrovic and Pilipovic in [18], where the authors found generalized solutions to linear,
elliptic equations with distributional coefficients. The advantage of solving PDE in these
generalized function spaces is that it allows one to circumvent the restrictions associated
with Sobolev coefficients and data, and thereby consider problems with coefficients and
data of much lower regularity.

1.4. Low Regularity Semilinear Elliptic Problems. If the mean curvatureτ is con-
stant, the CTT formulation (1.3)-(1.4) reduces to

−∆φ+
1

8
Rφ+

1

12
τ 2φ5 − σ2φ−7 − 2κρφ−3 = 0. (1.9)

Locally, on a given chart elementΩ = ψ(U), this problem assumes the form

−
3
∑

i,j=1

Di(a
ijDju) + b1u

5 − b2u
−7 − b3u

−3 = 0 onΩ, (1.10)

u = ϕ on∂Ω.

In an effort to extend the rough solution theory of the constraints, we are interested in
solving (1.10) with minimal regularity assumptions on the coefficientsaij , b1, b2, b3 and
boundary dataϕ. Therefore, in this paper we consider a family of elliptic, semilinear
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Dirichlet problems that are of the form

−
N
∑

i,j=1

Di(a
ijDju) +

K
∑

i=1

biuni = 0 in Ω, (1.11)

u = ρ on∂Ω,

whereaij , bi andρ are potentially distributional andni ∈ Z for eachi.
The main contributions of this article are an existence result for (1.11) in a Colombeau-

type algebra, and an existence result inH1(Ω) for an ill-posed, critical exponent problem
of the form

−∆u+ aum + bui = 0 in Ω, (1.12)

u = ρ on∂Ω,

wherem ≥ 5, 1 ≤ i ≤ 4 are inN, Ω ⊂ R3, b ∈ L∞(Ω) anda ∈ Lp(Ω) with 6
5
≤

p < ∞. The framework we use to prove existence for (1.11) consistsof embedding the
singular data and coefficients into a Colombeau-type algebra so that multiplication of the
distributional coefficients is well-defined. To solve (1.12), we do not explicitly require
the Colombeau machinery that we develop to solve (1.11), butwe use similar ideas to
produce a sequence of functions that converge to a solution of (1.12) inH1(Ω).

The Colombeau solution framework for this paper is based mainly on the ideas found
in [18]. Here we extend the work done by Mitrovic and Pilipovic in [18] to include
a certain collection of semilinear problems. While Pilipovic and Scarpalezos solved a
divergent type, quasilinear problem in a Colombeau type algebra in [19], the class of
nonlinear problems we consider here does not fit naturally into that framework. Here we
provide a solution method that is distinct from those posed in [19] and [18] that is better
suited for the class of semilinear problems that we are interested in solving. The set up
of our problem is completely similar to the set-up in [18]: given the semilinear Dirichlet
problem in (1.11), we consider the family of problems

Pǫ(x,D)uǫ = fǫ(x, uǫ) onΩ, (1.13)

uǫ = ρǫ on∂Ω,

wherefǫ, hǫ, andPǫ(x,D) are obtained by convolving the data and coefficients of (1.11)
with a certain mollifier. Thus a solution to the problem in a Colombeau algebra is a net of
solutions to the above family satisfying certain growth estimates inǫ. This is discussed
in detail in Sections 3.2 and 3.4. This basic concept underlies both the solution process
in our paper and in [18] and [19]. However it is our solution process in the Colombeau
algebra that is quite distinct from that laid out in [18], where the authors used linear ellip-
tic theory to determine a family of solutions and then classical elliptic,a priori estimates
to prove certain growth estimates. Most notably, the authors developed a precise maxi-
mum principle-type argument necessary to obtain polynomial growth estimates required
to find a solution. Our strategy for solving (1.11) differs ina number of ways. First, in
Section 5.1 we develop a family ofa priori L∞ bounds to the family of problems (1.13).
Then in Section 5.2 we show that these estimates determine sub- and super-solutions to
(1.13). We then employ the method of sub- and super-solutions in Section 4.1 to deter-
mine a family of solutions. Finally,ǫ-growth estimates on the sub- and super-solutions
are established in Section 5.2, and in Section 6 these estimates are used in conjunction
with thea priori estimates in Section 3.1 to prove the necessaryǫ-growth estimates on
our family of solutions.
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This paper can be broken down into two distinct, but related parts. The first part is
dedicated to solving (1.12). Our solution to this problem does not explicitly require the
techniques that we develop to solve problems with distributional data in Colombeau al-
gebras and only relies on standard elliptic PDE theory. However, the ideas that we use
to solve the problem are closely related: we obtain a solution by solving a family of
problems similar to (1.13) and then show that these solutions converge to a function in
H1(Ω). Therefore, we present our existence result for (1.12) firstto convey the benefit
that the more general Colombeau solution strategy has, not only for solving problems in
the Colombeau Algebra, but also for obtaining solutions in more classical spaces. The
remainder of the paper is dedicated to developing the Colombeau framework described
in the preceding paragraph. This consists of defining an algebra appropriate for a Dirich-
let problem and properly defining a semilinear elliptic problem in the algebra. Once a
well-posed elliptic problem in the Colombeau algebra has been formed, we discuss the
conditions under which the problem has a solution in the algebra and finally, describe
how to translate a given problem of the form (1.11) into a problem that can be solved in
the algebra. It should be noted that while the intention is tofind solutions to (1.11), the
main result pertaining to Colombeau algebras in this paper is Theorem 4.1, which is the
main solution result for semilinear problems in our particular Colombeau algebra.

Outline of the paper.The remainder of the paper is structured as follows. In Section 2
we motivate this article by proving the existence of a solution to (1.12). In Section 3
we state a number of preliminary results and develop the technical tools required to
solve (1.11). Among these tools and results are the explicita priori estimates found
in [18] and a description of the Colombeau framework in whichthe coefficients and data
will be embedded. Then in Section 4 we state the main existence result in Theorem 4.1,
give a statement and proof of the method of sub- and super solutions in Theorem 4.3, and
then give an outline of the method of proof of Theorem 4.1. Following our discussion
of elliptic problems in Colombeau algebras, we discuss a method to embed (1.11) into
the algebra to apply our Colombeau existence theory. The remainder of the paper is
dedicated to developing the tools to prove Theorem 4.1. In Section 5 we determine
a priori L∞ bounds of solutions to our semilinear problem and a net of sub- and super-
solutions satisfying explicitǫ-growth estimates. Finally, in Section 6 we utilize the results
from Section 5 to prove the main result outlined in Section 4.

2. SOLUTION CONSTRUCTION USING ASEQUENCE OFAPPROXIMATE PROBLEMS

If Ω ⊂ R3, the Sobolev embedding theorem tells us thatH1(Ω) will compactly embed
into Lp(Ω) for 1 ≤ p < 6 and continuously embed for1 ≤ p ≤ 6. Given functions
u, v ∈ H1(Ω), this upper bound onp places a constraint on the values ofi that allow for
the productuiv to be integrable. In particular, Sobolev embedding and standard Hölder
inequalities imply that this product will be integrable forarbitrary elements ofH1(Ω)
only if 1 ≤ i ≤ 5. More generally, ifa ∈ L∞(Ω), the termau5v will also be integrable.
However, ifa is an unbounded function inLp(Ω) for somep ≥ 1, then this product is not
necessarily integrable without some sort ofa priori bounds ona, u, andv. Therefore, the
following problem does not have a well-defined weak formulation inH1(Ω):

−∆u+ aum + bui = 0 in Ω, (2.1)

u = ρ on∂Ω,

whereΩ ⊂⊂ Ω′, m ≥ 5, 1 ≤ i ≤ 4 are inN, ρ ∈ H1(Ω′), b ∈ L∞(Ω′) anda ∈ Lp(Ω′)
for 6

5
≤ p <∞.
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The objective of this section is to find a solution to the aboveproblem. In order to solve
(2.1), we solve a sequence of approximate, smooth problems and use a compactness
argument to obtain a convergent subsequence. We first define necessary notation and
then present the statements of two theorems that will be necessary for our discussion in
this section. Then we prove the existence of a solution to (2.1). Finally, we show that if a
solution exists, then under certain conditions we can construct a net of problems whose
solutions converge to the given solution.

2.1. Overview of Spaces and Results for the Critical Exponent Problem. For the
remainder of the paper, for a fixed domainΩ ⊂ R

n, we denote the standard Sobolev
norms onΩ by

‖u‖Lp =

(
∫

Ω

|u(x)|p dx

)
1

p

, (2.2)

‖u‖W k,p =

(

k
∑

i=1

‖Diu‖pLp

)

1

p

.

For the special case thatp = 2, we letHk(Ω) = W k,2(Ω) andH1
0 (Ω) denote the functions

in H1(Ω) that have trace zero. Furthermore, let

ess supu = û, (2.3)

ess infu = ǔ.

In our subsequent work we will also require regularity conditions on the domainΩ and
its boundary. Therefore, we will need the following definition taken from [6]:

Definition 2.1. A bounded domainΩ ⊂ Rn and its boundary are of classCk,α, 0 ≤ α ≤
1, if for eachx0 ∈ ∂Ω there is a ballB(x0) and a one-to-one mappingΨ of B onto
D ⊂ Rn such that:

(1) Ψ(B ∩ Ω) ⊂ Rn
+,

(2) Ψ(B ∩ ∂Ω) ⊂ ∂Rn
+,

(3) Ψ ∈ Ck,α(B), Ψ−1 ∈ Ck,α(D).

We say that a domainΩ is of classC∞ if for a fixed 0 ≤ α ≤ 1 it is of classCk,α

for eachk ∈ N. Additionally, for this section and the next we will requirethe following
Theorem and Proposition:

Theorem 2.2. SupposeΩ ⊂ R
n is aC∞ domain and assumef : Ω × R

+ → R is in
C∞(Ω× R+) andρ ∈ C∞(Ω). LetL be an elliptic operator of the form

Lu = −Di(a
ijDju) + cu, and aij , c ∈ C∞(Ω). (2.4)

Suppose that there exist sub- and super-solutionsu− : Ω → R andu+ : Ω → R such
that the following hold:

(1) u−, u+ ∈ C∞(Ω),
(2) 0 < u−(x) < u+(x) ∀x ∈ Ω.

Then there exists a solutionu ∈ C∞(Ω) to

Lu = f(x, u) onΩ, (2.5)

u = ρ on∂Ω,

such thatu−(x) ≤ u(x) ≤ u+(x).
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Proposition 2.3. Letu be a solution to a semilinear equation of the form

−
N
∑

i,j

Di(a
ijDju) +

K
∑

i=1

biuni = 0 in Ω, (2.6)

u = ρ, ρ(x) > 0 on ∂Ω

whereaij , bi and ρ ∈ C∞(Ω). Suppose that the semilinear operator in(2.6) has the
property thatni > 0 for all 1 ≤ i ≤ K. Let nK be the largest positive exponent and
suppose thatbK(x) > 0 in Ω. Define

β ′ = inf
c∈R

{

K
∑

i=1

inf
x∈Ω

bi(x)yni > 0 ∀y ∈ (c,∞)

}

, (2.7)

β = max{β ′, sup
x∈∂Ω

ρ(x)}. (2.8)

Then ifu ∈ H1(Ω) is a positive weak solution to Eq.(2.6), it follows that0 ≤ u ≤ β <
∞.

For the proof of Theorem 2.2, see Section 4.1. A more detailedversion of Proposi-
tion 2.3 and its proof can be found in Section 5. Now that we have all of the tools we
need, we shall now prove the existence of a solution to a problem of the form (2.1).

2.2. Existence of a Solution to an Ill-Posed Critical Exponent Problem. For the
following discussion, letΩ′ ⊂ R3 be an open and bounded domain and assume that
Ω ⊂⊂ Ω′ is also open and ofC1,α-class.

Here we seek a weak solutionu ∈ H1(Ω) to the problem

−∆u+ aum + bui = 0 in Ω, (2.9)

u = ρ onΩ,

wherem ≥ 5, 1 ≤ i ≤ 4 are inN,

b ∈ L∞(Ω′), a ∈ Lp(Ω′),
6

5
≤ p <∞, ρ ∈ H1(Ω′), (2.10)

and

ǎ > 0, b̂ < 0, and ρ̌ > 0. (2.11)

If our test function space isH1
0 (Ω), Eq. (2.9) is ill-posed due to the termaum. The

weak formulation of Eq. (2.9) would contain the integral
∫

Ω

aumv dx,

wherev ∈ H1(Ω), a ∈ Lp(Ω), andu ∈ H1(Ω). For these choices of function spaces this
integral need not be finite. We show that this problem does in fact have a weak solution
by regularizing the coefficients of our problem and solving asequence of approximating
problems. We obtain the following proposition.

Proposition 2.4. The semilinear problem(2.9) has a solutionu ∈ H1(Ω) if a, b, andρ
satisfy the conditions in(2.10)and (2.11).

Proof. To determine a solution to (2.9), we consider the sequence ofsolutions to the
approximate problems

−∆un + an(un)
m + bn(un)

i = 0 in Ω, (2.12)

un = ρn on∂Ω,
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wherean = a∗φn, bn = b∗φn, andρn = ρ∗φn andφn = n3φ(nx) is a positive mollifier
where

∫

φ(x) dx = 1. Given thatφ is a positive mollifier, it is clear that for eachn ∈ N,

ǎn > 0, b̂n < 0 and ρ̌n > 0.

We first verify that the sequence of problems (2.12) has a solution for eachn. To do
this, we will utilize Theorem 2.2 and Proposition 2.3. Letβn have the same properties
asβ in Proposition 2.3 for the sequence of problems (2.12). Thenusing the notation in
Proposition 2.3, we can write explicit expressions forβ for (2.9) andβn. It is not hard to
show that

β = max

{

(

−
b̌

ǎ

)

1

m−i

, ρ̂

}

,

and

β ′
n =

(

−
b̌n
ǎn

)

1

m−i

, βn = max {β ′
n, ρ̂n} .

By Proposition 2.3, for eachn ∈ N, βn determines ana priori upper bound for the
approximate problems. Furthermore, it is not difficult to see that for eachn ∈ N that
0 andβn are sub- and super-solutions for (2.12). See Section 5.2 andTheorem 4.3 for
more details. Therefore Theorem 2.2 implies that forn sufficiently large0 ≤ un ≤ βn is
a solution inC∞(Ω) to (2.12) given thatρn, an, bn ∈ C∞(Ω) for n sufficiently large.

Now observe that for eachn ∈ N, βn ≤ β, which follows from the fact that

−bn(x) =

∫

(−b(y))φn(x− y) dy ≤

∫

(−b̌)φn(x− y) = −b̌, (2.13)

andan(x) ≥ ǎ, which is verified by a similar calculation. Therefore, by standardLp

elliptic regularity theory

‖un‖W 2,p ≤C(‖ − an(un)
m − bn(un)

i‖Lp + ‖un‖Lp) (2.14)

≤C(βm
n ‖an‖Lp + βi

n‖bn‖Lp + βn) < M <∞,

whereM is independent ofn given thatβn ≤ β, an → a in Lp, bn → b in Lp. Because
p > 6

5
andΩ is of C1,α-class,W 2,p(Ω) embeds compactly intoH1(Ω). Therefore, there

exists a convergent subsequenceunj
→ u in H1(Ω). We claim now thatu satisfies the

following two properties:

(1) 0 ≤ u ≤ β almost everywhere,
(2) u weakly solves (2.9).

The inequality0 ≤ u ≤ β a.e. follows from the fact theunj
→ u in H1(Ω) and

0 ≤ unj
≤ βnj

≤ β for eachj ∈ N.

Indeed, if we assume thatu > β on some set of nonzero measure, then for somen the
setAn = {x ∈ Ω : u(x) > β + 1

n
} has positive measure. Then for allj ∈ N, we have

that
∫

|unj
− u|2 dx ≥

∫

An

|unj
− u|2 dx ≥

1

n2
µ(An) > 0.

But this clearly contradicts the fact thatunj
→ u in H1(Ω). A similar argument shows

thatu ≥ 0, a.e in Ω.
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Finally, we want to show thatu weakly solves (2.9). Letǫ > 0. Then for anyv ∈
H1

0 (Ω) we have that
∣

∣

∣

∣

∫

(

∇u · ∇v + aumv + buiv
)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(

∇u · ∇v + aumv + buiv
)

dx (2.15)

−

∫

(

∇unj
· ∇v + anj

(unj
)mv + bnj

(unj
)iv
)

dx

∣

∣

∣

∣

,

given thatunj
solves (2.12). Then expanding the second line of the above equation we

find that
∣

∣

∣

∣

∫

∇u · ∇v + aumv + buiv dx

∣

∣

∣

∣

(2.16)

≤

∫

∣

∣∇u · ∇v −∇unj
· ∇v

∣

∣ dx+

∫

∣

∣aumv − anj
(unj

)mv
∣

∣ dx

+

∫

∣

∣buiv − bnj
(unj

)iv
∣

∣ dx (2.17)

≤

∫

∣

∣∇u · ∇v −∇unj
· ∇v

∣

∣ dx+

∫

∣

∣aumv − a(unj
)mv
∣

∣ dx

+

∫

∣

∣a(unj
)mv − anj

(unj
)mv
∣

∣ dx+

∫

∣

∣buiv − b(unj
)iv
∣

∣ dx

+

∫

∣

∣b(unj
)iv − bnj

(unj
)iv
∣

∣ dx. (2.18)

Every term in (2.18) tends to0 given thatunj
→ u inH1(Ω), anj

→ a in Lp(Ω), bnj
→ b

in Lp(Ω) and0 ≤ u ≤ β. To show that the expression
∫

∣

∣aumv − a(unj
)mv
∣

∣ dx→ 0,

we apply Ḧolder’s inequality to obtain
∫

∣

∣aumv − a(unj
)mv
∣

∣ dx ≤ ‖a‖
L

6
5
‖umv − umnj

v‖L6 .

Given thatunj
→ u inH1(Ω), unj

→ u a.e, where we pass to a subsequence if necessary.
Thereforeumnj

v → umv a.e. Finally, we observe that

|um − umnj
|6|v|6 ≤ 64β6m|v|6,

and given thatv ∈ H1(Ω) andΩ is bounded, the Dominated Convergence Theorem
implies that‖umv − umnj

v‖L6 → 0. Therefore
∫

∣

∣aumv − a(unj
)mv
∣

∣ dx→ 0.

We apply a similar argument to show that the lower order termsin Eq. (2.16) converge
to zero and conclude thatu is a weak solution to (2.9). �

3. PRELIMINARY MATERIAL : HÖLDER SPACES AND COLOMBEAU ALGEBRAS

We now begin to develop the Colombeau Algebra framework thatwill be used to solve
(1.11). We first define Hölder Spaces and state precise versions of the classical Schauder
estimates given in [18]. The definition of the Colombeau Algebra in which we will
be working and these classical elliptic regularity estimates make these spaces the most
natural choice in which to do our analysis. Therefore we willwork almost exclusively
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with Hölder spaces for the remainder of the paper. Following our discussion of function
spaces, we define the Colombeau algebra in which we will work and then formulate an
elliptic, semilinear problem in this space.

3.1. Function Spaces and Norms.In this paper we will make frequent use of Schauder
estimates on Hölder spaces defined on an open setΩ ⊂ Rn. Here we give notation for
the Hölder norms and then state the regularity estimates that will be used.

All notation and results are taken from [6]. Assume thatΩ ⊂ R
n is open, connected

and bounded. Then define the following norms and seminorms:

[u]α;Ω = sup
x,y∈Ω

x 6=y

|u(x)− u(y)|

|x− y|α
, (3.1)

[u]k,0;Ω = sup
|β|=k

sup
x∈Ω

|Dβu|, (3.2)

[u]k,α;Ω = sup
|β|=k

[Dβu]α;Ω, (3.3)

‖u‖Ck(Ω) = |u|k;Ω =
k
∑

j=0

[u]j,0;Ω, (3.4)

‖u‖Ck,α(Ω) = |u|k,α;Ω = |u|k;Ω + [u]k,α;Ω. (3.5)

We interpretCk,α(Ω) as the subspace of functionsf ∈ Ck(Ω) such thatf (k) is α-Hölder
continuous. Also, we view the subspaceCk,α(Ω) as the subspace of functionsf ∈ Ck(Ω)
such thatf (k) is locallyα−Hölder continuous (over compact setsK ⊂⊂ Ω).

Now we consider the equation

Lu = aijDiju+ biuDiu+ cu = f in Ω, (3.6)

u = ρ on∂Ω, (3.7)

whereL is a strictly elliptic operator satisfying

aij = aji and aij(x)ξiξj ≥ λ|ξ|2, x ∈ Ω, ξ ∈ R
n.

The following regularity theorems can be found in [6] and [18]. See [6] for proofs. Note
that the constantC in the following theorems has no dependence onΛ or λ.

Theorem 3.1. Assume thatΩ is aC2,α-class domain inRn and thatu ∈ C2,α(Ω) is a
solution(3.6), wheref ∈ Cα(Ω) andρ ∈ C2,α(Ω). Additionally assume that

|aij |0,α;Ω, |b
i|0,α;Ω, |c|0,α;Ω ≤ Λ.

Then there existsC > 0 such that

|u|2,α;Ω ≤ C

(

Λ

λ

)3

(|u|0;Ω + |ρ|2,α;Ω + |f |0,α;Ω).

This theorem can then be extended to higher order derivatives by repeatedly applying
Theorem 3.1. See [18] for details. We summarize this result in the next theorem.

Theorem 3.2. LetΩ be aCk+2,α-class domain andu ∈ C2(Ω) ∩ C0(Ω) be a solution
of (3.6), wheref ∈ Ck,α(Ω) andρ ∈ Ck+2,α(Ω). Additionally assume that

|aij|k,α;Ω, |b
i|k,α;Ω, |c|k,α;Ω ≤ Λ.
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Thenu ∈ Ck+2,α;Ω(Ω) and

|u|k+2,α;Ω ≤ Ck+1

(

Λ

λ

)3(k+1)

(|u|0;Ω + |ρ|k+2,α;Ω + |f |k,α;Ω),

whereC is the constant from Theorem 3.1.

3.2. Colombeau Algebras.Now that we have defined the basic function spaces that we
will be working with and stated the regularity theorems thatwill be required to obtain
necessary growth estimates, we are ready to define the Colombeau algebra with which
we will be working and formulate our problem in this algebra.

Let V be a topological vector space whose topology is given by an increasing family
of seminormsµk. That is, foru ∈ V , µi(u) ≤ µj(u) if i ≤ j. Then lettingI = (0, 1], we
define the following:

EV = (V )I whereu ∈ EV is a net(uǫ) of elements inV with ǫ ∈ (0, 1], (3.8)

EM,V = {(uǫ) ∈ EV | ∀k ∈ N ∃a ∈ R : µk(uǫ) = O(ǫa) asǫ→ 0}, (3.9)

NV = {(uǫ) ∈ EV,M | ∀k ∈ N ∀a ∈ R : µk(uǫ) = O(ǫa) asǫ→ 0}. (3.10)

Then the polynomial generalized extension ofV is formed by considering the quotient
GV = EM,V /NV .

We now give a few examples of generalized extensions. See [18, 7] for a more detailed
discussion.

Definition 3.3. If V = C, r ∈ C, µk(r) = |r|, then one obtainsC, the ring of gen-
eralized constants. This ring contains all nets of complex numbers that grow no faster
than a polynomial inǫ−1 as ǫ → 0. For example,(eǫ

−1

) 6∈ C given that this net grows
exponentially inǫ−1 asǫ→ 0.

Definition 3.4. LetΩ ⊂ Rn be an open set,Uk ⊂⊂ Ω an exhaustive sequence of compact
sets andα ∈ Nn

0 a multi-index. Then if

V = C∞(Ω), f ∈ C∞(Ω), µk(f) = sup{|Dαf | : x ∈ Uk, |α| ≤ k},

one obtainsGs(Ω), the simplified Colombeau Algebra.

Definition 3.5. If V = C∞(Ω), whereΩ ⊂ Rn is bounded and

µk(f) = sup{|Dαf | : |α| ≤ k, x ∈ Ω},

we denote the generalized extension byG(Ω). The setEM,C∞(Ω) will be denoted byEM(Ω)
and be referred to as the space of moderate elements. The setNC∞(Ω) will be denoted by

N (Ω) and will be referred to as the space of null elements.

Both Gs(Ω) andC were developed by Colombeau and laid the basis for the more
general construction described in (3.8)-(3.10). See [4] for more details. As in [18], for the
purposes of this paper we are concerned withG(Ω) given that we are interested in solving
the Dirichlet problem and require a well-defined boundary value. If (uǫ) ∈ EM(Ω) is a
representative of an elementu ∈ G(Ω), we shall writeu = [(uǫ)] to indicate thatu is
the equivalence class of(uǫ). At times we will drop the parentheses and simply write
[uǫ]. Addition and multiplication of elements inG(Ω) is defined in terms of addition and
multiplication of representatives. That is, ifu = [(uǫ)] andv = [(vǫ)], thenuv = [(uǫvǫ)]
andu + v = [(uǫ + vǫ)]. Derivations are defined foru = [(uǫ)] ∈ G(Ω) by ∂xi

u =
[(∂xi

uǫ)].
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Theorem 3.6. With the above definitions of addition, multiplication and differentiation,
G(Ω) is a associative, commutative, differential algebra.

Proof. This follows from the fact component-wise addition, multiplication, and differ-
entiation makesV I = (C∞(Ω))I into a differential algebra. By design,EM(Ω) is the
largest sub-algebra of(C∞(Ω))I that containsN (Ω) as an ideal. ThereforeG(Ω) is a
differential algebra as well. See [7]. �

Now that we have given the basic definition of a Colombeau algebra, we can discuss
how distributions can be embedded into a space of this type.

3.3. Embedding Schwartz Distributions into Colombeau Algebras. While the alge-
bras defined above are somewhat unwieldy, these spaces are well suited for analyzing
problems with distributional data. The primary reason for this is that for a given open set
Ω ⊂ Rn, the Schwartz distributionsD′(Ω) can be linearly embedded intoGs(Ω). This
allows one to define anextrinsicnotion of distributional multiplication that is consistent
with the pointwise product ofC∞(Ω) functions. Here we briefly discuss the method use
to embedD′(Ω) into Gs(Ω). Given that we will primarily be working with the general-
ized extensionG(Ω) defined in (3.5), we will then discuss how to embed certain subsets
of D′(Ω)into G(Ω).

We begin by recalling the definitions of the spaces that will be relevant to our discus-
sion. The Schwartz distributions on an open setΩ ⊂ Rn are denotedD′(Ω) and are
defined to be the dual ofD(Ω), the space ofC∞(Ω) functions with support contained in
Ω. For a givenϕ ∈ D(Ω) andT ∈ D′(Ω), the action ofT onϕwill be denoted by〈T, ϕ〉.
We letE ′(Ω) ⊂ D′(Ω) denote the denote the space of compactly supported distributions.
Finally, we define the space of Schwartz functionsS(Rn) by

S(Rn) = {f ∈ C∞(Rn) | ‖f‖α,β <∞, ∀α, β} , ‖f‖α,β = sup
x∈Rn

|xαDβf(x)|, (3.11)

whereα, β are multi-indices.
Letϕ ∈ D(Rn) satisfy

ϕ(x) ≥ 0,

∫

Rn

ϕ(x) dx = 1, lim
ǫ→0

ϕǫ(x) = lim
ǫto0

ǫ−nϕ
(x

ǫ

)

→ δ(x). (3.12)

So ϕ(x) is a standard, positive mollifying function. To construct our embedding, we
will also require another function with more restrictive properties. Letψ ∈ S(Rn) be
a function such thatψ ≡ 1 on some neighborhood of0. Then defineφ ∈ S(Rn) by
φ = F−1[ψ], the inverse Fourier transform ofψ. It is easy to see that

∫

Rn

φ dx = 1 and
∫

Rn

xαφ dx = 0 ∀|α| ≥ 1. (3.13)

Let φǫ = ǫ−nφ(x
ǫ
).

The properties ofφ specified in (3.13) are extremely important. By convolving with
the functionφǫ and using the sheaf properties of the spaceGs(Ω), one is able to construct
a linear embedding

i : D′(Ω) → Gs(Ω) (3.14)

See [7] for details. An important property of this embeddingis that for anyf, g ∈ C∞(Ω),
i(fg) = i(f )i(g). Therefore, multiplication inGs(Ω) is an extension of point-wise mul-
tiplication ofC∞ functions.
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We now discuss a method of embedding certain subsets ofD′(Ω) into G(Ω). The
reason that we must restrict our embedding to certain subsets ofD′(Ω) is that our gener-
alized extensionG(Ω) is defined on the closed setΩ. Colombeau algebras of this form
no longer have a sheaf structure and so we can no longer take advantage of the general
embedding (3.14) constructed in [7]. However, as in the casewith the embedding con-
structed in [7], our main tool for constructing our embedding will be convolution with
the functionφ satisfying the properties in (3.13).

The most natural way to associate a given elementu ∈ D′(Ω) with a net ofC∞(Ω)
functions is by mollifyingu with a function likeϕ defined in (3.12). But in order for
our embedding to preserve point-wise multiplication ofC∞(Ω) functions, we need the
functions that we convolve withu to have the same properties asφǫ defined in (3.13).
However,φǫ ∈ S(Rn) for eachǫ ∈ (0, 1], so convolution with an arbitrary elementu ∈
D′(Ω) is not well-defined. This is where the sheaf properties ofG(Ω) are instrumental
in constructing the embedding (3.14). However, we no longerhave this option, and
therefore focus on finding a subsets ofD′(Ω) for which the convolution is defined.

Givenf ∈ C∞(Ω), we again observe that the convolution(f ∗ φǫ) is not well-defined
for all x ∈ Ω, ǫ ∈ (0, 1]. This follows becausef has no value outside ofΩ. What
we seek is a way to extendC∞(Ω) functions toC∞(Rn) functions, and more generally,
elements ofD′(Ω) toD′(Rn), so that the convolution has meaning. We note that it is not
possible to extend an arbitrary element ofD′(Ω) to D′(Rn), so we will restrict ourselves
to a subspace ofD′(Ω). The following theorem taken from [1] will provide us with a
large subspace ofD′(Ω) that we can extend.

Theorem 3.7. Suppose thatΩ′ ⊂⊂ Ω, and thatΩ is bounded and ofC∞-class. Then
there exists a total extension operator, which has the property that for each0 ≤ k ≤ ∞,
1 ≤ p ≤ ∞

E : W k,p(Ω) →W k,p(Rn), (3.15)

E(u)|Ω = u,

and

‖Eu‖W k,p(Rn) ≤ C(n, p)‖u‖W k,p(Ω). (3.16)

Moreover,E can be extended toE ′(Ω′) ⊂ E ′(Ω) so that ifu ∈ E ′(Ω′),

E(u)|Ω = u (3.17)

E(u)|Ωc = 0.

Proof. Let α = d(Ω′, ∂Ω) > 0. Given thatΩ is of C∞-class, we may cover∂Ω with
finitely many balls of radiusα/2 (or smaller if necessary) that areC∞-diffeomorphic
with some subset ofB1(0) ∩ R

n
+. As in the proof of Theorem 4.28 in [1], we may use

these neighborhoods to construct a total extension operator which has the property that
for every0 ≤ k ≤ ∞, 1 ≤ p ≤ ∞,

E :W k,p → W k,p(Rn), (3.18)

E(f)|Ω = f. (3.19)

We can extend this extension operator toE ′(Ω′). It is well know that for anyu ∈
W k,p(Ω), there exists an approximating net{uǫ} ⊂ C∞(Ω) such thatuǫ → u inW k,p(Ω).
See the Global Approximation Theorem in [5]. Using the same argument as in the proof
of this theorem, we can obtain an approximating net ofC∞(Ω) functions foru ∈ E ′(Ω′).
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We have thatu = ∂αf for some continuousf with support in an arbitrary neighborhood
of supp(u). By shifting the argument off and mollifying up to the boundary in each of
the balls covering∂Ω defined above, and then applying a partition of unity argument, we
obtain a net{uǫ} ⊂ C∞(Ω) such thatuǫ → u in D′(Ω). Furthermore, for this net{uǫ}
there existsǫ0 ∈ (0, 1) for whichuǫ ≡ 0 onΩ∩Ω′c if 0 < ǫ < ǫ0. For a givenu ∈ E ′(Ω′),
we let{uǫ} denote this approximating net and we define

E(u) = lim
ǫ→0

E(uǫ).

Based on the properties ofuǫ, this extension will extendu by zero outside ofΩ. We note
that foru ∈ W k,p(Ω) ∩ E ′(Ω′), this definition of extension onE ′(Ω′) will be consistent
with the extension onW k,p(Ω) given the properties ofE in (3.16). �

We now define the following subspace ofD′(Ω) that we will embed intoG(Ω). Fix an
open subset ofΩ′ ⊂⊂ Ω, whereΩ is ofC∞-class. Let

F ′(Ω) = E ′(Ω′) +

(

⋃

0≤k≤∞,1≤p≤∞

W k,p(Ω)

)

, (3.20)

where the above notation indicates the subspace formed by the sum ofE ′(Ω) and the
union of the Sobolev spaces as subspaces ofD′(Ω).

Theorem 3.8. Let E be the extension operator defined in Theorem 3.7 and letφǫ ∈
S(Rn) be the net of functions defined in(3.13). Then the map

i : F ′(Ω) → G(Ω), (3.21)

i(u) = (E (u) ∗ φǫ)|Ω +N (Ω),

is a linear embedding ofF ′(Ω) into G(Ω).

Proof. By the linearity of the extension operatorE, we observe that for anyu ∈ E ′(Ω′)
andv ∈ W k,p(Ω), 0 ≤ k ≤ ∞, 1 ≤ p ≤ ∞, E(u+ v) is well defined and unique in the
distributional sense. Therefore, for any elementu ∈ F ′(Ω), E(u) ∈ D′(Rn) is unique
andi is well-defined. For anyu ∈ W k,p(Ω) and multi-indexα, we have that

∂α(E(u) ∗ φǫ) = (3.22)
∫

E(u)(x)∂αφǫ(x− y) dy =

∫

E(u)(x− ǫy)ǫ−|α|∂αφ(y) dy = O(ǫ−|α|),

given thatE(u) ∈ W k,p(Rn) andφ ∈ S(Rn). So i(u) ∈ G(Ω). A similar argument
can be used to show thati(v) ∈ G(Ω) if v ∈ E ′(Ω′). By linearity, i(u) ∈ G(Ω) for any
u ∈ F ′(Ω). Now we only need to show thati is injective. Suppose thati(u) ∈ N (Ω).
ThenE(u) ∗ φǫ(x) → 0 uniformly onΩ. Therefore, for anyψ ∈ D(Ω),

〈u, ψ〉 = lim
ǫ→0

〈u ∗ φǫ, ψ〉 = lim
ǫ→0

〈E(u) ∗ φǫ, ψ〉 = 0.

Sou ≡ 0 in D′(Ω) andi is injective. �

The embeddingi has the important property that it preserves point-wise multiplication
of C∞(Ω) functions. We prove this by following the argument in [7]. Wefirst observe
that we may embedf ∈ C∞(Ω) into G(Ω) by the map

σ : C∞(Ω) → G(Ω), (3.23)

σ(f) = (f)ǫ +N (Ω)

where(f)ǫ the constant net such thatfǫ = f for all ǫ ∈ (0, 1].
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Proposition 3.9. The embeddingi has the property thati |
C∞(Ω) = σ.

Proof. This follows from the proof of Proposition 1.2.11 in [7] and the fact that ifu ∈
C∞(Ω), thenE(u) ∈ C∞(Rn) andE(u)|Ω = u. �

Proposition 3.9 allows us to conclude thati preserves point-wise multiplication of
C∞(Ω) functions. Indeed, iff, g ∈ C∞(Ω), then

i(fg) = σ(fg) = σ(f )σ(g) = i(f )i(g).

Now that we have a means of embedding a rather large class of elements ofD′(Ω) into
G(Ω) that are useful for solving PDE, we can begin to formulate what a semilinear prob-
lem inG(Ω) looks like.

3.4. Nets of Semilinear Differential Operators. We begin by defining a semilinear
differential operator onG(Ω). Our construction strongly resembles the construction by
Mitrovic and Pilipovic in [18]. Forǫ < 1, if (aijǫ ), (b

i
ǫ) ∈ EM(Ω), we obtain a net of

operators by definingAǫ to be

Aǫuǫ = −Di(a
ij
ǫ Dju) +

K
∑

i

biǫu
ni = −aijǫ DiDjuǫ − (Dia

ij
ǫ )(Djuǫ) +

K
∑

i=1

biǫ(uǫ)
ni,

whereni ∈ Z. Under certain conditions, we can view a net of operators of the above
form as an operator onG(Ω). Here we determine these conditions, which will guarantee
that this net of operators is a well-defined operator onG(Ω).

Given an elementu in G(Ω), we first need to ensure that(Aǫuǫ) ∈ EM(Ω). Based on
how derivations and multiplication are defined inG(Ω), the only serious obstacle to this
is if ni < 0 for somei ≤ K. Therefore, we must guarantee that the element((uǫ)

ni) is a
well-defined representative inG(Ω) if ni < 0. It suffices to ensure thatu = [(uǫ)] has an
inverse inG(Ω). This is true if for each representative(uǫ) of u, there existsǫ0 ∈ (0, 1]
andm ∈ N such that for allǫ ∈ (0, ǫ0), infx∈Ω |uǫ(x)| ≥ Cǫm. See [7] for more details.
So u ∈ G(Ω) must possess this property in order for the above operator tohave any
chance of being well-defined. For the rest of this section we assume thatu satisfies this
condition.

Now suppose(aijǫ ), (b
i

ǫ) in EM(Ω), and let

Aǫu = −
N
∑

i,j=1

Di(a
ij
ǫ Dju) +

K
∑

i

b
i

ǫu
ni = aijǫ DiDjuǫ − (Dia

ij
ǫ )(Djuǫ) +

K
∑

i=1

b
i

ǫ(uǫ)
ni.

We say that(Aǫ) ∼ (Aǫ) if (aijǫ − aijǫ ), (b
i
ǫ− b

i

ǫ) ∈ N s(Ω). Then(Aǫ) ∼ (Aǫ) if and only
if (Aǫuǫ − Aǫuǫ) ∈ N (Ω) for all (uǫ) ∈ EM(Ω) due to the fact that the above operators
are linear in(aijǫ ) and(biǫ).

Let A be the family of nets of differential operators of the above form and define
A0 = A/ ∼. Then forA ∈ A0 andu ∈ EM(Ω), define

A : G(Ω) → G(Ω) byAu = [Aǫuǫ],

where

[Aǫuǫ] = [−aijǫ ][DiDjuǫ] + [−Dia
ij
ǫ ][Djuǫ] +

K
∑

i=1

[biǫ][u
ni
ǫ ]. (3.24)

Using this definition,A ∈ A0 is a well-defined operator onG(Ω). We summarize this
statement in the following proposition.
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Proposition 3.10.A0 is a well-defined class of differential operators fromG(Ω) toG(Ω).

Proof. Based on the construction ofA0, it is clear that for a given representative(uǫ) of
u ∈ G(Ω), (Aǫuǫ) and(Aǫuǫ) represent the same element inG(Ω). Furthermore, given a
representative(Aǫ) of A0, we also have that[Aǫuǫ] = [Aǫuǫ] for any two representatives
of u ∈ G(Ω). To see this, we first observe that for eachǫ, every term inAǫuǫ is linear
except for the(uǫ)ni terms. So to verify the previous statement it suffices to showthat for
eachni ∈ Z, ((uǫ)ni) = ((uǫ)

ni) + (ηǫ), where(ηǫ) ∈ N (Ω). Given that[(uǫ)] = [(uǫ)]
in G(Ω), we have(uǫ) = (uǫ) + (ηǫ) for (ηǫ) ∈ N (Ω). For fixedǫ, ni ∈ Z+,

(uǫ)
ni = (uǫ + ηǫ)

ni =

ni
∑

j=0

(

ni

j

)

(uǫ)
j(ηǫ)

ni−j = (uǫ)
ni + ηǫ,

whereηǫ consists of the summands that each contain some nonzero power of ηǫ. Clearly
the net(ηǫ) ∈ N (Ω). If ni ∈ Z−, then for a fixedǫ,

(uǫ)
ni =

1

(uǫ + ηǫ)|ni|
=

1
∑|ni|

j=0

(

|ni|
j

)

(uǫ)j(ηǫ)|ni|−j
=

1

(uǫ)|ni| + ηǫ
.

By looking at the difference

(uǫ)
ni −

1

(uǫ)|ni| + ηǫ
=

ηǫ
((uǫ)|ni|)((uǫ)|ni| + ηǫ)

= η̂ǫ,

we see that the net((uǫ)ni) = ((uǫ)
ni) + (η̂ǫ), where(η̂ǫ) ∈ N (Ω). Therefore for any

u ∈ G(Ω) possessing an inverse, and anyA ∈ A0, the expressionAu = [Aǫuǫ] ∈ G(Ω)
is well-defined. �

3.5. The Dirichlet Problem in G(Ω). Using the above definition ofA, we can now
define our semilinear Dirichlet problem onG(Ω). Let u, ρ ∈ G(Ω) whereΩ ⊂ R

n is
open, bounded and ofC∞-class. Then letE be a total extension operator ofΩ such that
for f ∈ C∞(Ω), Ef ∈ C∞(Rn) andEf |Ω = f . See [1] for details. UsingE we may
may defineu|∂Ω = ρ|∂Ω for elementsu, ρ ∈ G(Ω) if there are representatives(uǫ) and
(ρǫ) such that

uǫ|∂Ω = ρǫ|∂Ω + nǫ|∂Ω,

wherenǫ is a net ofC∞ functions defined in a neighborhood of∂Ω such that

sup
x∈∂Ω

|nǫ(x)| = o(ǫa) ∀a ∈ R. (3.25)

This will ensure thatu|∂Ω = ρ|∂Ω does not depend on representatives [18]. With this
definition of boundary equivalence, for a given operatorA ∈ A0, the Dirichlet problem

Au = 0 in Ω, (3.26)

u = ρ on∂Ω

is well-defined inG(Ω). Now we state the conditions under which the above problem
can be solved inG(Ω).
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4. OVERVIEW OF THE MAIN RESULTS

We begin this section by stating the main existence result for the Dirichlet problem
(3.26). LetA ∈ A0 be an operator onG(Ω) defined by (3.24). Also assume that the coef-
ficients ofA have representatives(aijǫ ), (b

i
ǫ) ∈ EM(Ω) that satisfy the following properties

for ǫ ∈ (0, 1):

aijǫ = ajiǫ , aijǫ ξiξj ≥ λǫ|ξ|
2 ≥ C1ǫ

a|ξ|2, (4.1)

|aijǫ |k+1,α;Ω, |biǫ|k,α;Ω ≤ Λk,ǫ ≤ C2(k)ǫ
b(k), ∀k ∈ N

b1ǫ ≤ −C3ǫ
c, {ni : ni < 0} 6= ∅, n1 = min{ni : ni < 0}

bKǫ ≥ C4ǫ
d, {ni : ni > 0} 6= ∅, nK = max{ni : ni > 0},

whereC1, C2, C3 andC4 are positive constants independent ofǫ and the constants
a, b, c, d ∈ R are also independent ofǫ. The notationC2(k) andb(k) is meant to indi-
cate that these constants may depend onk. Then the following Dirichlet problem has a
solution inG(Ω):

Au = [Aǫuǫ] = 0 in Ω, (4.2)

u = ρ on∂Ω.

We summarize this result in the following theorem, which will be the focus of the re-
mainder of the paper:

Theorem 4.1.Suppose thatA : G(Ω) → G(Ω) is in A0 and that the conditions of(4.1)
hold. Assume thatρ ∈ G(Ω) has a representative(ρǫ) such that forǫ < 1, ρǫ ≥ Cǫa for
someC > 0 anda ∈ R. Then there exists a solution to the Dirichlet problem(4.2) in
G(Ω).

Proof. The proof will be given in Section 6. �

Remark 4.2. We can actually weaken the assumptions in(4.1)so that the conditions on
the representatives(aijǫ ), (b

1
ǫ), (b

K
ǫ ), (ρǫ) only have to hold for allǫ ∈ (0, ǫ0) for some

ǫ0 ∈ (0, 1). Suppose that this is the case, and that using these conditions we are able to
show that for allǫ ∈ (0, ǫ0), there existsuǫ that solves

Aǫuǫ = 0 in Ω, (4.3)

uǫ = ρǫ on∂Ω.

If uǫ satisfies the additional property that for allk ∈ N, there exists someǫ′0 ∈ (0, ǫ0),
C > 0, anda ∈ R such that for allǫ ∈ (0, ǫ′0), |uǫ|k,α ≤ Cǫa, then we can form a solution
(vǫ) ∈ EM(Ω) to (4.2)by definingvǫ = uǫ for ǫ ∈ (0, ǫ0) andvǫ = uǫ0 for ǫ ∈ [ǫ0, 1]. The
solution theory that we develop to prove Theorem 4.1 with thestronger conditions(4.1)
will also imply the existence of the partial net(uǫ) of solutions to(4.3) in the event that
the constraints outlined in(4.1) only hold forǫ ∈ (0, ǫ0) ⊂ (0, 1). We will require this
fact when we consider how to embed and solve(1.11)in G(Ω) later on in Section 3.3.

We begin assembling the tools we will need to prove Theorem 4.1. The first tool we
need is a method capable of solving a large class of semilinear problems. The method of
sub- and super-solutions meets this need, and we discuss this process of solving elliptic,
semilinear problems in the following section.
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4.1. The Method of Sub- and Super-Solutions.In Theorem 4.3 below, we state a
fixed-point result that will be essential in proving Theorem4.1. This fixed-point re-
sult is known as the method of sub- and super-solutions due tothe fact that for a given
operatorA, the method relies on finding a sub-solutionu− and super-solutionu+ such
thatu− < u+. A large part of this paper is devoted to finding a net of positive sub- and
super-solutions for (4.2) and establishing growth conditions for them. In the proof below,
let

Lu = −Di(a
ijDju) + cu, (4.4)

be an elliptic operator where

aij = aji, aijξiξj ≥ λ|ξ|2 and aij , c ∈ C∞(Ω).

We now state and prove the sub- and super-solution fixed-point result for these assump-
tions.

Theorem 4.3. SupposeΩ ⊂ Rn is aC∞ domain and assumef : Ω × R+ → R is in
C∞(Ω × R+) and ρ ∈ C∞(Ω). Let L be of the form(4.4). Suppose that there exist
functionsu− : Ω → R andu+ : Ω → R such that the following hold:

(1) u−, u+ ∈ C∞(Ω),
(2) 0 < u−(x) ≤ u+(x) ∀x ∈ Ω,
(3) Lu− ≤ f(x, u−),
(4) Lu+ ≥ f(x, u+),
(5) u− ≤ ρ on ∂Ω,
(6) u+ ≥ ρ on ∂Ω.

Then there exists a solutionu to

Lu = f(x, u) onΩ, (4.5)

u = ρ on∂Ω,

such that

(i) u ∈ C∞(Ω),
(ii) u−(x) ≤ u(x) ≤ u+(x).

Proof. The general approach of the proof will be to construct a monotone sequence{un}
that is point-wise bounded above and below by our super- and sub-solutions,u+ and
u−. We will then apply elliptic regularity estimates and the Arzela-Ascoli Theorem to
conclude that the sequence{un} has aC∞(Ω) limit u that is a solution to

Lu = f(x, u) onΩ, (4.6)

u = ρ on∂Ω.

Given thatu−(x), u+(x) ∈ C∞(Ω), the interval[min u−(x),max+ u+(x)] ⊂ R
+ is

well-defined. We then restrict the domain of the functionf to the compact setK =
Ω × [min u−(x),max+ u+(x)]. Given thatf ∈ C∞(Ω × R+), it is clearly inC∞(Ω ×

[min u−(x),max+ u+(x)]) and so the function|∂f(x,t)
∂t

| is continuous and attains a max-
imum onK. Denoting this maximum value bym, let M = max{m,− infx∈Ω c(x)}.
Then consider the operator

Au = Lu+Mu,

and the function
F (x, t) =Mu+ f(x, t).
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Note that this choice ofM ensures thatF (x, t) is an increasing function int onK and
thatA is an invertible operator. Also, we clearly have the following:

A(u) = F (x, u) ⇐⇒ Lu = f(x, u), (4.7)

A(u−) ≤ F (x, u−) ⇐⇒ L(u−) ≤ f(x, u−), (4.8)

A(u+) ≥ F (x, u+) ⇐⇒ L(u+) ≥ f(x, u+). (4.9)

The first step in the proof is to construct the sequence{un} iteratively. Letu1 satisfy the
equation

A(u1) = F (x, u−) onΩ, (4.10)

u1 = ρ on∂Ω.

We observe that foru, v ∈ H1
0 (Ω), the operatorA satisfies

C1‖u‖
2
H1(Ω) ≤ 〈Au, u〉 , and 〈Au, v〉 ≤ ‖u‖2H1(Ω)‖v‖

2
H1(Ω),

where

〈u, v〉 =

∫

Ω

uvdx, and 〈Lu, v〉 =

∫

Ω

(aijDjuDiv + cuv)dx.

Therefore the Lax-Milgram theorem implies that there exists a weak solutionu1 ∈ H1(Ω)
satisfyingu1 − ρ ∈ H1

0 (Ω). Given our assumptions onF (x, t) andρ,F (x, u+) ∈ Hm(Ω)
andρ ∈ Hm(Ω) for all m ∈ N. Therefore, by standard elliptic regularity arguments,
u1 ∈ Hm(Ω) for all m ∈ N. This, the assumption thatΩ is ofC∞-class and the assump-
tion thataij , c, ρ ∈ C∞(Ω) imply thatu1 ∈ C∞(Ω) andu1 = ρ on∂Ω. Therefore, we
may iteratively define the sequence{uj} ⊂ C∞(Ω) where

A(uj) = F (x, uj−1) onΩ, (4.11)

uj = ρ on∂Ω.

The next step is to verify that the sequence{uj} is a monotonic increasing sequence
satisfyingu− ≤ u1 ≤ · · · ≤ uj−1 ≤ uj ≤ · · · ≤ u+. We prove this by induction. First
we observe that

A(u− − u1) ≤ F (x, u−)− F (x, u−) = 0 onΩ, (4.12)

(u− − u1)|∂Ω ≤ 0.

Therefore, by the weak maximum principle,u− ≤ u1 onΩ. Now suppose thatuj−1 ≤ uj.
Then

A(uj − uj+1) = F (x, uj−1)− F (x, uj) ≤ 0 onΩ, (4.13)

(uj − uj+1)|∂Ω = 0.

given thatF (x, t) is an increasing function in the variablet anduj−1 ≤ uj. The weak
maximum principle again implies thatuj ≤ uj+1, so by induction we have that{uj}
is monotonic increasing sequence that is point-wise bounded below byu−(x). Now we
show that our increasing sequence is point-wise bounded above byu+(x) by proceeding
in a similar manner. Given thatu− ≤ u+ andu+ is a super-solution, we have that

A(u1 − u+) ≤ F (x, u−)− F (x, u+) ≤ 0 onΩ, (4.14)

(u1 − u+)|∂Ω ≤ 0.
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The weak maximum principle implies thatu1 ≤ u+. Now assume thatuj ≤ u+. Then

A(uj+1 − u+) ≤ F (x, uj)− F (x, u+) ≤ 0 onΩ, (4.15)

(uj+1 − u+)|∂Ω ≤ 0,

given thatF (x, t) is an increasing function anduj ≤ u+. So by induction the sequence
{uj} is a monotonic increasing sequence that is point-wise bounded above byu+(x) and
point-wise bounded below byu−(x).

Up to this point, we have constructed a monotonic increasingsequence{uj} ⊂ C∞(Ω)
such that for eachj, uj satisfies the Dirichlet problem (4.11) and is point-wise bounded
below byu− and above byu+. The next step will be to apply the Arzela-Ascoli theorem
and a bootstrapping argument to conclude that this sequenceconverges tou ∈ C∞(Ω).
We first show that it converges tou ∈ C(Ω) by an application of the Arzela-Ascoli The-
orem. Clearly the family of functions{uj} is point-wise bounded, so it is only necessary
to establish the equicontinuity of the sequence. Given thateach functionuj solves the
problem (4.11), by standardLp elliptic regularity estimates (cf. [6]) we have that

‖uj‖W 2,p ≤ C(‖uj‖Lp + ‖F (x, uj−1)‖Lp).

The regularity ofF (x, t) and the sequence{uj} along with the above estimate and
the compactness ofΩ × [inf u−, sup u+] imply that there exists a constantN such that
‖F (x, uj−1)‖Lp ≤ N for all j. Therefore, ifp > 3, the above bound and the fact that
u− ≤ uj ≤ u+ imply that for eachj ∈ N,

|uj|1,α;Ω ≤ C‖u‖W 2,p ≤ ∞,

whereα = 1 − 3
p
. This implies that the sequence{uj} is equicontinuous. The Arzela-

Ascoli Theorem then implies that there exists au ∈ C(Ω) and a subsequence{ujk} such
thatujk → u uniformly. Furthermore, due to the fact that the sequence{uj} is monotonic
increasing, we actually have thatuj → u uniformly onΩ. Once we have thatuj → u in
C(Ω), we applyLp regularity theory again to conclude that

|uj − uk|1,α;Ω ≤C‖uj − uk‖W 2,p (4.16)

≤C ′(‖uj − uk‖Lp + ‖F (x, uj−1)− F (x, uk−1)‖Lp).

Note that the above estimate follows from the fact thatujk+1 − ujl+1 satisfies

A(uj − uk) = F (x, uj−1)− F (x, uk−1) onΩ, (4.17)

(uj − uk)|∂Ω = 0.

Given thatuj → u in C(Ω), (4.16) implies that the sequence{uj} is a Cauchy sequence
in C1(Ω). The completeness ofC1(Ω) then implies that this subsequence has a limit
v ∈ C1(Ω), and given thatuj → u in C(Ω), it follows that u = v. Similarly, by
repeating the above argument and using higher orderLp estimates we have that

|uj − uk|2,α;Ω ≤C(‖uj − uk‖W 3,p) (4.18)

≤C ′(‖uj − uk‖W 1,p + ‖F (x, uj−1)− F (x, uk−1)‖W 1,p),

whereuj → u in C1(Ω) ask → ∞. Again, (4.18), the regularity ofF and the fact that
uj → u in C1(Ω) imply that the sequence{uj} is Cauchy inC2(Ω). A simple induction
argument then shows thatu ∈ C∞(Ω).

The final step of the proof is to show thatu is an actual solution to the problem (4.5).
It suffices to show thatu is a weak solution to the above problem. It is clear thatu =
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ρ on∂Ω, so we only need to show thatu satisfies (4.5) onΩ. Fix v ∈ H1
0 (Ω). Then

based on the definition of the sequence{uj}, we have
∫

Ω

(aijDjujDiv +Mujv)dx =

∫

Ω

(f(x, uj−1) +Muj−1)vdx.

As uj → u uniformly inC(Ω), we let letj → ∞ to conclude that
∫

Ω

(aijDjuDiv +Muv)dx =

∫

Ω

(f(x, u) +Mu)vdx.

Upon canceling the term involvingM from both sides, we find thatu is a weak solution.
�

4.2. Outline of the Proof of Theorem 4.1. Now that the sub- and super-solution fixed-
point theorem is in place, we give an outline for how to prove Theorem 4.1.

Step 1:Formulation of the problem.We phrase (4.2) in a way that allows us to solve
a net of semilinear elliptic problems. We assume that the coefficients ofA and
boundary dataρ have representatives(aijǫ ), (b

i
ǫ), and(ρǫ) in EM(Ω) satisfying the

assumptions (4.1). Then for this particular choice of representatives, we solve
the family of problems:

Aǫuǫ = −
N
∑

i,j=1

Di(a
ij
ǫ Djuǫ) +

N
∑

i

biǫu
ni
ǫ = 0 in Ω, (4.19)

uǫ = ρǫ on∂Ω.

Then we must ensure that the net of solutions(uǫ) ∈ EM(Ω) and ensure that (4.19)
is satisfied for other representatives ofA, ρ, u.

Step 2:DetermineL∞-estimates and a net of generalized constant sub-solutionsand
super-solutions. We determine constant,a priori L∞ bounds such that for a pos-
itive net of solutions(uǫ) of the semilinear problem (4.19), there exist constants
a1, a2 ∈ R, C1, C2 > 0 independent ofǫ ∈ (0, 1) such that

C1ǫ
a1 < αǫ ≤ uǫ ≤ βǫ < C2ǫ

a2 .

These estimates are constructed in such a way that for eachǫ, the pairαǫ, βǫ are
sub- and super-solutions for (4.19).

Step 3:Apply fixed-point theorem to solve each semilinear problem in (4.19). Using the
sub- and super-solutionsαǫ, βǫ, we apply Theorem 4.3 to obtain a net of solutions
(uǫ) ∈ C∞(Ω).

Step 4:Verify that the net of solutions(uǫ) ∈ EM(Ω). Here we show that the net of so-
lutions satisfies the necessary growth conditions inǫ using the growth conditions
on the sub- and super- solutions and Theorem 3.1.

Step 5:Verify that the solution is well-defined. Once we’ve determined that the net of
solutions(uǫ) ∈ EM(Ω), we conclude that[(uǫ)] ∈ G(Ω) is a solution to the
Dirichlet problem (4.2) by showing that the solution is independent of the repre-
sentatives chosen. Note that most of the work for this step was done in Proposi-
tion 3.10.

We shall carry out the above steps in our proof of Theorem 4.1 in Section 6. We still
need to determine a net of sub- and super- solutions for (4.1), which we do in Section 5.
But before we move on to this and the other steps in the above outline, we briefly return to
the motivating problem (1.11) by discussing how to embed a problem with distributional
data intoG(Ω).
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4.3. Embedding a Semilinear Elliptic PDE with Distributional Da ta into G(Ω). Now
that we have defined what it means to solve a differential equation inG(Ω), we are ready
to return to the problem discussed at the beginning of the paper. We are interested in
solving an elliptic, semilinear Dirichlet problem of the form

−
N
∑

i,j=1

Di(a
ijDju) +

K
∑

i=1

biuni = 0 in Ω, (4.20)

u = ρ on∂Ω,

whereaij , bi andρ are potentially distributional andni ∈ Z for eachi. If we can formu-
late this problem as a family of equations similar to (4.19),then it can readily be solved
in G(Ω) by Theorem 4.1. The key to formulating our problem with singular data as a net
of problems is Theorem 3.8.

Suppose thatΩ′ ⊂⊂ Ω andΩ is ofC∞-class. For this choice ofΩ′, we can construct an
extension operatorE as in Theorem 3.7 and then use Theorem 3.8 to define an embedding
of F ′(Ω) into G(Ω), where we definedF ′(Ω) ⊂ D′(Ω) in section 3.3. If we are given a
problem of the form (4.20) with dataaij , bi, ρ in F ′(Ω), then we may use Theorem 3.8
to embed the coefficientsaij , bi andρ into G(Ω). We will denote a representative of
the image of each these terms inG(Ω) by (aijǫ ), (b

i
ǫ) and (ρǫ). Then for a choice of

representatives, we obtain a net of problems of the form (4.19).
In order to solve this net of problems using Theorem 4.1, we need there to exist a

choice of representatives(aijǫ ), (b
i
ǫ) and(ρǫ) that satisfy the conditions specified in (4.1).

While these conditions might seem exacting, this solution framework still admits a wide
range of interesting problems. This is evident when one considers the following propo-
sition:

Proposition 4.4. LetΩ′ ⊂⊂ Ω, whereΩ is bounded and ofC∞-class, and defineF ′(Ω)
as in section 3.3. Letni ∈ Z be a collection of integers for1 ≤ i ≤ K and assume that
there exist1 ≤ i, j ≤ K such thatni < 0 andnj > 0. Then assume that

n1 = min{ni : ni < 0}, and nK = max{ni : ni > 0}.

Suppose thataij , b1, bK , ρ ∈ C(Ω) andb2, · · · , bK−1 ∈ F ′(Ω). Additionally assume that
aij satisfies the symmetric, ellipticity condition andρ > 0, b1 < 0 andbK > 0 in Ω. Then
the problem

−
N
∑

i,j=1

Di(a
ijDju) +

K
∑

i=1

biuni = 0 in Ω, (4.21)

u = ρ on∂Ω,

admits a solution inG(Ω).

Proof. This follows from Proposition 3.8, Theorem 4.1, Remark 4.2 and the fact that
(aij ∗φǫ), (b1∗φǫ), (bK ∗φǫ) and(ρ∗φǫ) converge uniformly toaij , b1, bK andρ in Ω. For
ǫ sufficiently small, the corresponding problem (4.19) inG(Ω) will satisfy the conditions
specified in (4.1). Therefore, Theorem 4.1 and Remark 4.2 imply the result. �

With the issue of solving (4.20) at least partially resolved, we return to the task of
proving Theorem 4.1. We begin by establishing somea priori L∞-bounds for a solution
to our semilinear problem (4.21) if the given data is smooth.
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5. SUB- AND SUPER-SOLUTION CONSTRUCTION AND ESTIMATES

Given an operatorA ∈ A0 with coefficients satisfying (4.1), our solution strategy for
the Dirichlet problem (4.2) is to solve the family of problems (4.19) and then establish the
necessary growth estimates. In order for this to be a viable strategy, we first need to show
that (4.19) has a solution for eachǫ ∈ (0, 1). Given thatni < 0 for some1 ≤ i ≤ K, for
eachǫ, we must restrict the operator

Aǫuǫ = −
N
∑

i,j=1

Di(a
ij
ǫ Djuǫ) +

K
∑

i=1

biuni
ǫ ,

to a subset of functions inC∞(Ω) to guarantee thatAǫ is well-defined. In particular, for
eachǫ we consider functionsuǫ ∈ C∞(Ω) such that0 < αǫ ≤ uǫ ≤ βǫ < ∞ for some
choice ofαǫ andβǫ. The first part of this section is dedicated to making judicious choices
of αǫ andβǫ for eachǫ such that a solutionuǫ to (4.19) exists that satisfiesαǫ ≤ uǫ ≤ βǫ.

Once a net of solutions(uǫ) is determined, it is necessary to show that if(uǫ) ∈ EM(Ω),
then an operatorA ∈ A0 whose coefficients satisfy (4.1) is well-defined for(uǫ). Recall
thatA is only a well defined operator for elementsu ∈ G(Ω) satisfyinguǫ ≥ Cǫa for
ǫ ∈ (0, ǫ0) ⊂ (0, 1), a ∈ R and some constantC independent ofǫ. This will require us
to establish certainǫ-growth estimates onαǫ, which we do later in this section.

5.1. L∞ Bounds for the Semilinear Problem. We begin by determining the net ofa
priori boundsαǫ andβǫ described above. For now we disregard theǫ notation. In the
following proposition we determinea priori estimates for a weak solutionu ∈ H1(Ω) to
a problem of the form

−
N
∑

i,j

Di(a
ijDju) +

K
∑

i=1

biuni = 0 in Ω, (5.1)

u = ρ on∂Ω,

with certain conditions imposed on the coefficients and exponents. In particular, in the
following proposition we assume thatΩ ⊂ Rn is connected, bounded, and ofC∞-class,
andaij , bi, ρ ∈ C(Ω) with ρ > 0 in Ω.

Proposition 5.1. Suppose that the semilinear operator in(5.1) has the property that
ni > 0 for some1 ≤ i ≤ K. LetnK be the largest positive exponent and suppose that
bK(x) > 0 in Ω. Additionally, assume that one of the following two cases holds:

(1) ni < 0 for some1 ≤ i < K and ifn1 = min{ni : ni < 0}, (5.2)

thenb1(x) < 0 in Ω.

(2) nK is odd and0 < ni for all 1 ≤ i ≤ K. (5.3)

If case(5.2)holds, define

α′
1 = sup

c∈R+

{

K
∑

i=1

sup
x∈Ω

bi(x)yni < 0 ∀y ∈ (0, c)

}

, (5.4)

α1 = min{α′
1, inf

x∈∂Ω
ρ(x)}. (5.5)
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If case(5.3)holds, define

α′
2 = sup

c∈R

{

K
∑

i=1

sup
x∈Ω

bi(x)yni < 0 ∀y ∈ (−∞, c)

}

, (5.6)

α2 = min{α′
2, inf

x∈∂Ω
ρ(x)}. (5.7)

If case(5.2)or case(5.3)holds, define

β ′ = inf
c∈R

{

K
∑

i=1

inf
x∈Ω

bi(x)yni > 0 ∀y ∈ (c,∞)

}

, (5.8)

β = max{β ′, sup
x∈∂Ω

ρ(x)}. (5.9)

Under these assumptions and definitions, if case(5.2)holds andu ∈ H1(Ω) is a positive
weak solution to Eq.(5.1), then0 < α1 ≤ u ≤ β < ∞. Otherwise, if case(5.3) holds
andu ∈ H1(Ω) is a weak solution to Eq.(5.1), then−∞ < α2 ≤ u ≤ β <∞.

Remark 5.2. We observe that Eq.(5.1) does not have a well-defined weak formulation
for arbitrary u ∈ H1(Ω). The way to interpret Proposition 5.1 is that if we seek a
positive solutionu ∈ H1(Ω) that weakly solves Eq.(5.1) and satisfies condition(5.2),
then we only need to look for solutions inH1(Ω) ∩ [α1, β], where[α1, β] denotes the
L∞(Ω) interval of functionsu suchα1 ≤ u ≤ β a.e. Similarly, we only need to look for
u ∈ H1(Ω) ∩ [α2, β] if condition(5.3)holds.

Remark 5.3. Note that for the purposes of proving Theorem 4.1, we are primarily con-
cerned with case(5.2). This is the case that we will focus on for the remainder of the
paper. However, with a little extra work we could very easilygeneralize Theorem 4.1 to
allow for ni > 0 for all 1 ≤ i ≤ K andnK > 0 odd. Then we could use case(5.3) to
establish the necessary bounds.

Proof. We first note that in all casesα1, α2 andβ are well-defined given the conditions
on b1(x) andbK(x) and the exponentsni for 1 ≤ i ≤ K. In particular, the assumption
thatb1(x) < 0 in (5.2) ensures thatα1 is well-defined and the assumption thatnK is odd
andni > 0 ensures thatα2 is well-defined.

Based on the definitions ofα1, α2 andβ, if u is a solution to (5.1) (we assumeu is
nonnegative in the case of (5.2)), then it is easy to verify that the functionsφ1 = (u−β)+

andφ
1
= (u− α1)

− are inH1
0 (Ω) if (5.2) holds andφ

2
= (u− α2)

− andφ2 = (u− β)+

are inH1
0 (Ω) if (5.3) holds. Indeed, we may writeu = u0 + uD, whereu0 ∈ H1

0 (Ω) and
we have that

0 ≤ φ1 = (u− β)+ = (u0 + uD − β)+ ≤ (uD − β)+ + u+0 (5.10)

0 ≥ φ
1
= (u− α1)

− = (u0 + uD − α1)
− ≥ (uD − α1)

− + u−0 . (5.11)

Taking the trace of Eqs. (5.10) and (5.11) and using the definition of α1 andβ we find
that φ

1
andφ1 are inH1

0 (Ω). By applying a similar argument we can conclude that
φ
2
∈ H1

0 (Ω).
Define the set

Y =
{

x ∈ Ω | u ≥ β
}

if case (5.2) or (5.3) holds. If case (5.2) holds, let

Y1 = {x ∈ Ω | 0 < u ≤ α1},
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and if case (5.3) holds, let

Y
2
= {x ∈ Ω | u < α2}.

Then ifu ∈ H1(Ω)+ is a weak solution to (5.1), supp(φ
1
) = Y

1
. Similarly, if u ∈ H1(Ω)

is a weak solution to (5.1), then supp(φ1) = supp(φ2) = Y and supp(φ
2
) = Y

2
.

We have the following string of inequalities forφ
1

if condition (5.2) holds:

C2‖φ1‖
2
H1(Ω) ≤ C1‖∇((u− α)−)‖2L2(Ω) (5.12)

≤

∫

Ω

aijDj((u− α)−)Dj((u− α)−) dx

=

∫

Ω

aijDj(u− α)Dj((u− α)−) dx

=

∫

Y
1

(−
K
∑

i=1

bi(x)uni)(u− α) dx ≤ 0.

We can make a similar argument to show that‖φ
2
‖H1(Ω) = 0 if condition (5.3) holds.

We also have the following string of inequalities forφ = φ1 = φ2 if either condition
(5.2) or (5.3) holds:

C2‖φ‖
2
H1(Ω) ≤ C1‖∇((u− β)+)‖2L2(Ω) (5.13)

≤

∫

Ω

aijDj((u− β)+)Di((u− β)+) dx

=

∫

Ω

aijDj(u− β)Di((u− β)+) dx

=

∫

Y

(−
K
∑

i=1

bi(x)uni)(u− β) dx ≤ 0.

The above inequalities imply the result. �

Now that we’ve establishedL∞-bounds for solutions to (5.1), we can apply these
bounds for each fixedǫ to determine a net of bounds for the following net of problems:

−
N
∑

i,j

Dia
ij
ǫ Djuǫ +

K
∑

i=1

biǫu
ni
ǫ = 0 in Ω (5.14)

uǫ = ρǫ on∂Ω,

where(aijǫ ), (b
i
ǫ), (ρǫ) ∈ EM(Ω) satisfy the following for allǫ < 1:

aijǫ = ajiǫ , aijǫ ξiξj ≥ λǫ|ξ|
2 ≥ C1ǫ

a1 |ξ|2 (5.15)

|aijǫ |k,α;Ω, |biǫ|k,α;Ω ≤ Λk,ǫ ≤ C2(k)ǫ
a2(k), ∀k ∈ N

b1ǫ ≤ −C3ǫ
a3 , {ni : ni < 0} 6= ∅, n1 = min{ni : ni < 0}

bKǫ ≥ C4ǫ
a4 , {ni : ni > 0} 6= ∅, nK = max{ni : ni > 0}

ρǫ ≥ C5ǫ
a5 ,

andC1, · · · , C5 are positive constants that are independent ofǫ anda1, · · · , a5 ∈ R are
independent ofǫ. Then notationC2(k) anda2(k) is meant to indicate that these constants
may depend onk.
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Proposition 5.4. Suppose that for each fixedǫ ∈ (0, 1], uǫ is a positive solution to(5.14)
with coefficients satisfying(5.15). Then there existL∞-boundsαǫ andβǫ such that for
eachǫ, 0 < αǫ ≤ uǫ ≤ βǫ.

Proof. For each fixedǫ, if the assumptions in (5.15) hold, then case (5.2) of Propo-
sition 5.1 is satisfied. Therefore, for eachǫ ∈ (0, 1], there existsαǫ andβǫ such that
0 < αǫ ≤ uǫ ≤ βǫ. �

5.2. Sub- and Super-Solutions.In the previous section we showed that if the data of
(5.14) satisfies (5.15) and ifuǫ ∈ C∞(Ω) solves (5.14) for eachǫ, then0 < αǫ ≤
uǫ ≤ βǫ. Now, for eachǫ ∈ (0, 1], we want to show that there actually exists a solution
uǫ ∈ C∞(Ω) satisfying0 < αǫ ≤ uǫ ≤ βǫ. The key to proving this result lies in the fact
thatαǫ andβǫ are sub- and super-solutions to (5.14) for eachǫ.

Proposition 5.5.Suppose that the coefficients in the net of problems(5.14)satisfy(5.15).
Then there exists a net(uǫ) ∈ (C(Ω))I such that for eachǫ, uǫ solves(5.14) and
0 < αǫ ≤ uǫ ≤ βǫ, whereαǫ andβǫ be the bounds established in Proposition 5.4. .

Proof. To solve the above family of problems in (5.14), we show that the net ofL∞-
bounds(αǫ) and(βǫ) found in Proposition 5.4 is a net of sub and super-solutions to (5.14).
We then apply Theorem 4.3 to conclude that for eachǫ, there exists a solutionuǫ ∈
C∞(Ω).

Fix ǫ and letα′
ǫ andβ ′

ǫ be defined by (5.4) and (5.8) respectively, and let

αǫ = min{α′
ǫ, inf

∂Ω
ρǫ(x)},

βǫ = max{β ′
ǫ, sup

x∈∂Ω
ρǫ(x)}.

The conditions in Eq. (5.15) and the fact thatρǫ > 0 imply that αǫ > 0. Then the
definition ofαǫ implies that

Aǫαǫ =
K
∑

i=1

biǫ(αǫ)
ni ≤

K
∑

i=1

sup
x∈Ω

biǫ(αǫ)
ni ≤ 0, (5.16)

αǫ ≤ inf
x∈∂Ω

ρǫ(x) ≤ ρǫ,

which shows thatαǫ is sub-solution for eachǫ. Similarly, the conditions in Eq. (5.15)
and the definition ofβ ′

ǫ imply that

Aǫβǫ =

K
∑

i=1

biǫ(βǫ)
ni ≥

K
∑

i=1

inf
x∈Ω

biǫ(βǫ)
ni ≥ 0, (5.17)

βǫ ≥ sup
x∈∂Ω

ρǫ ≥ ρǫ,

which shows thatβǫ is a super-solution for eachǫ.
What remains is to show that thatαǫ ≤ βǫ. Given the definition ofαǫ andβǫ, it suffices

to show thatα′
ǫ ≤ β ′

ǫ. Define

γǫ = inf
c∈R

{
K
∑

i=1

sup
x∈Ω

bi(x)dni ≥ 0 ∀d ∈ (c,∞)}.
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Then we have thatα′
ǫ ≤ γǫ by the definition ofα′

ǫ. Furthermore, for a fixedǫ, given the
assumptions onbiǫ(x),

K
∑

i=1

inf
x∈Ω

biǫ(x)y
ni ≤

K
∑

i=1

sup
x∈Ω

biǫ(x)y
ni, ∀y ∈ R.

Therefore the definition ofβ ′
ǫ and the above inequality clearly imply thatγǫ ≤ β ′

ǫ. There-
foreα′

ǫ ≤ β ′
ǫ and the interval[αǫ, βǫ] is a nonempty subset ofR+. For eachǫ ∈ (0, 1], the

hypotheses of Theorem 4.3 are satisfied for the elliptic problem (5.15), so we may con-
clude that there exists a net of solutions(uǫ) ∈ (C∞(Ω))I that satisfy0 < αǫ ≤ uǫ ≤ βǫ
for each fixedǫ. �

The final task in this section is to show that an operatorA ∈ A0, with coefficients
satisfying (5.15), is a well-defined operator on any elementu ∈ EM(Ω) satisfying

αǫ ≤ uǫ ≤ βǫ ∀ǫ ∈ (0, 1].

Recall that in Section 3.4 we determined thatA is only well-defined for invertibleu ∈
G(Ω). Therefore, it suffices to show that(αǫ), (βǫ) and( 1

αǫ
), ( 1

βǫ
) are generalized con-

stants (3.3), which we verify in the following lemma.

Lemma 5.6.Let(αǫ) and(βǫ) be the net of sub- and super-solutions to(5.14)determined
in Section 5.1. Suppose that the coefficients of(5.14)satisfy(5.15). Then(αǫ), (βǫ),( 1

αǫ
),

and( 1
βǫ
) are inC, the ring of generalized constants.

Remark 5.7. Note that if( 1
αǫ
) ∈ C, then this implies that there exists anǫ0 ∈ (0, 1),

some constantC independent ofǫ anda ∈ R such thatαǫ ≥ Cǫa for all ǫ ∈ (0, ǫ0). Then
if (uǫ) ∈ EM(Ω) satisfiesαǫ ≤ uǫ ≤ βǫ for eachǫ, ( 1

αǫ
) ∈ C implies thatu = [(uǫ)] is

invertible inG(Ω). See Section 3.4 and[7] for more details.

Proof. We need to show that there exists constantsD1, D2 independent ofǫ and ǫ0 ∈
(0, 1) such that for allǫ ∈ (0, ǫ0),

αǫ ≥ D1ǫ
b1 for someb1 ∈ R,

βǫ ≤ D2ǫ
b2 for someb2 ∈ R.

So it is necessary to verify that there exists constantsD1 andD2 so that forǫ sufficiently
small

α′
ǫ ≥ D1ǫ

b1 , and inf
x∈∂Ω

ρǫ ≥ D1ǫ
b1 ,

β ′
ǫ ≤ D2ǫ

b2 , and sup
x∈∂Ω

ρǫ ≤ D2ǫ
b2 .

Given that(ρǫ) ∈ EM(Ω),

sup
x∈∂Ω

ρǫ ≤ sup
x∈Ω

ρǫ = O(ǫb),

for someb ∈ R. This and the assumption on(ρǫ) in (5.15) imply that we only need to
obtain the necessaryǫ-bounds onα′

ǫ andβ ′
ǫ.

For now, drop theǫ notation and considerα′ defined in (5.4). For a given functionf ,
define

γ
f
= sup

c∈R+

{f(b) ≤ 0 ∀b ∈ (0, c)} .
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Given that

α′ = sup
c∈R+

{

K
∑

i=1

sup
x∈Ω

bi(x)yni ≤ 0 ∀y ∈ (0, c)

}

,

it is clear that for another functionf(y) such that

f(y) ≥
K
∑

i=1

sup
x∈Ω

bi(x)yni on (0, c),

if γ
f

is defined andα′ ∈ (0, c), it must hold thatγ
f
≤ α′. Let C1 = |{ni : ni ≥ 0}|

andC2 = |{ni : ni < 0}| and ifC2 > 1, let ni2 = min{ni : n1 < ni < 0}. Note that
C1, C2 ≥ 1 based on the assumptions in (5.15). Then recalling thatb1(x) < 0, bK(x) > 0
correspond to the coefficients of the terms with the smallestnegative and largest positive
exponent of

∑K

i b
i(x)uni, if supx∈Ω |bi(x)| ≤ Λ for eachi, the following must hold for

y ∈ (0, 1):

K
∑

i=1

sup
x∈Ω

bi(x)yni ≤ sup
x∈Ω

b1(x)y
n1 + C1Λ + (C2 − 1)Λyni2 . (5.18)

Define

d =

(

− supx∈Ω(b1(x))

2(C2 − 1)Λ

)
1

ni2
−n1

if C2 > 1 and letd = 1 if C2 = 1. Then letc = min{1, d}. The definition ofc implies
that

(C2 − 1)Λyni2 ≤ −
supx∈Ω b1(x)

2
yn1,

for all y ∈ (0, c). So fory ∈ (0, c),

K
∑

i=1

sup
x∈Ω

bi(x)yni ≤
supx∈Ω b1(x)

2
yn1 + C1Λ = f(y).

Then ifα′ ∈ (0, c), α′ ≥ γ
f
. Given thatf(y) is a monotone increasing function onR+,

γ
f

is the lone positive root off(y). Thus,

γ
f
=

(

− supx∈Ω b1(x)

2C1Λ

)
1

−n1

,

which implies that ifα′ ∈ (0, c),

α′ ≥

(

− supx∈Ω b1(x)

2C1Λ

)
1

−n1

.

Similarly, for a fixedǫ ∈ (0, 1), define

dǫ =

(

− supx∈Ω(b
1
ǫ (x))

2(C2 − 1)Λǫ

)
1

ni2
−n1

,

if C2 > 1 and letdǫ = 1 if C2 = 1. Let cǫ = min{1, dǫ}. Then fory ∈ (0, cǫ), we have
that

(C2 − 1)Λǫy
ni2 ≤ −

supx∈Ω b
1
ǫ (x)

2
yn1.



30 M. HOLST AND C. MEIER

So the above arguments imply that ifα′
ǫ ∈ (0, cǫ), thenα′

ǫ ≥ γ
f,ǫ

and

α′
ǫ ≥

(

− supx∈Ω b
1
ǫ (x)

2C1Λǫ

)
1

−n1

.

Given the assumptions onb1ǫ (x) andΛǫ in (5.15), in this case we have thatα′
ǫ ≥ Cǫa for

some constantC > 0, a ∈ R andǫ sufficiently small. Now we must show thatcǫ ≥ Cǫa

for some constantC > 0, a ∈ R andǫ sufficiently small in the event thatα′
ǫ /∈ (0, cǫ).

It suffices to show thatdǫ ≥ Cǫa in the event thatC2 > 1. But clearly, forǫ sufficiently
small

dǫ =

(

−
supx∈Ω b

1
ǫ(x)

2(C2 − 1)Λǫ

)
1

ni2
−n1

≥ Cǫa,

given the assumptions onb1ǫ andΛǫ in (5.15). Thereforeα′
ǫ ≥ D1ǫ

a for some constant
D1 > 0, a ∈ R andǫ sufficiently small.

Now we determine bounds on the net(β ′
ǫ). Again, we temporarily drop theǫ and only

considerβ ′. Recall that

β ′ = inf
c∈R

{

K
∑

i=1

inf
x∈Ω

bi(x)yni ≥ 0 ∀y ∈ (c,∞)

}

.

For a given functionf(y), define

γf = inf
c∈R

{f(b) ≥ 0 ∀b ∈ (c,∞)} .

Then if f(y) ≤
∑K

i=1 supx∈Ω b
i(x)yni on some interval(c,∞) andβ ′ ∈ (c,∞), it must

hold thatγf ≥ β ′ if γf is defined. LetC1, C2 be as before and letni1 = max{ni : 0 ≤ ni < nK}
if C1 > 1. If y > 1, then

K
∑

i=1

inf
x∈Ω

bi(x)yni ≥ inf
x∈Ω

(bK(x))y
nK − (C1 − 1)Λyni1 − C2Λ.

Now define

d =

(

2(C1 − 1)Λ

infx∈Ω(bK(x))

)
1

nk−ni1

if C1 > 1 and letd = 1 if C1 = 1. Let c = max{1, d}. Then our choice ofd ensures that
if C1 > 1, then

−(C1 − 1)Λyni1 ≥ −
infx∈Ω(bK(x))y

nK

2
,

and that fory ∈ (c,∞),
K
∑

i=1

sup
x∈Ω

bi(x)yni ≥
infx∈Ω(bK(x))

2
ynK − C2Λ = f(y).

So if β ′ ∈ (c,∞), β ′ ≤ γf , whereγf is the lone positive root off onR+ given thatf is
monotone increasing on this interval. So ifβ ′ ∈ (c,∞),

β ′ ≤ γf =

(

2C2Λ

infx∈Ω(bK(x))

)
1

nK

.

By defining

dǫ =

(

2(C1 − 1)Λǫ

infx∈Ω b
K
ǫ (x)

)
1

nk−ni1

, and cǫ = max{1, dǫ}, (5.19)
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and applying the above argument forβ ′ to the net(β ′
ǫ) for each fixedǫ, it is clear that if

β ′
ǫ ∈ (cǫ,∞), then

β ′
ǫ ≤

(

2C2Λǫ

infx∈Ω b
K
ǫ (x)

)
1

nK

≤ Cǫa,

given the assumptions onbKǫ andΛǫ in (5.15).
Now assume thatβ ′

ǫ /∈ (cǫ,∞). Then it suffices to show that ifC1 > 1, thendǫ ≤ Cǫa

for ǫ sufficiently small and some positive constantsC anda ∈ R. But again, this is
clearly true given the assumptions (5.15) and the fact that

dǫ =

(

2(C1 − 1)Λǫ

infx∈Ω b
K
ǫ (x)

)
1

nk−ni1

.

�

6. PROOF OF THEMAIN RESULTS

We now prove Theorem 4.1 using the results from Section 5. Forclarity, we break the
proof up into the steps outlined in Section 4.2.

6.1. Proof of Theorem 4.1.

Proof.Step 1:Formulation of the problem.For convenience, we restate the problem and
the formulation that we will use to find a solution. Given an operatorA ∈ A0,
defined by (3.24), we want to solve the following Dirichlet problem inG(Ω):

Au = 0 in Ω, (6.1)

u = ρ on∂Ω.

We phrase (6.1) in a way that allows us to solve a net of semilinear elliptic
problems. We assume that the coefficients ofA and boundary dataρ have repre-
sentatives(aijǫ ), (b

i
ǫ), and(ρǫ) in EM(Ω) satisfying the assumptions (4.1). Then

for this particular choice of representatives, our strategy for solving (6.1) is to
solve the family of problems

Aǫuǫ = −
N
∑

i,j=1

Di(a
ij
ǫ Djuǫ) +

N
∑

i

biǫu
ni
ǫ = 0 in Ω, (6.2)

uǫ = ρǫ on∂Ω,

and then show that the net of solutions(uǫ) ∈ EM(Ω).
Step 2:DetermineL∞-estimates and a net of sub-solutions and super-solutions. In Sec-

tion 5, we concluded that for eachǫ, the pairαǫ andβǫ determine sub- and super-
solutions to (6.2) such that0 < αǫ < βǫ. Furthermore, in Lemma 5.6 we con-
cluded that there existC1, C2 > 0 anda1, a2 ∈ R such that forǫ sufficiently
small, the nets(αǫ) and(βǫ) satisfyC1ǫ

a1 ≤ αǫ < βǫ ≤ C2ǫ
a2 , thereby verifying

that(αǫ), (βǫ), (
1
αǫ
), ( 1

βǫ
) ∈ C, the ring of generalized constants.

Step 3:Apply fixed-point theorem to solve each semilinear problem in (4.19). This fol-
lows from Proposition 5.5. We briefly reiterate the proof here. We simply verify
the hypotheses of Theorem 4.3. For each fixedǫwe have sub- and super-solutions
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αǫ andβǫ satisfying0 < αǫ < βǫ andaijǫ , b
i
ǫ, ρǫ ∈ C∞(Ω) satisfying (5.15). Fi-

nally,Ω is ofC∞-class and the function

f(x, y) = −
K
∑

i=1

biǫ(x)y
ni ∈ C∞(Ω× R

+),

so we may apply Theorem 4.3 to conclude that there exists a netof solutions(uǫ)
to (5.14) satisfying0 < αǫ ≤ uǫ ≤ βǫ.

Step 4:Verify that the net of solutions(uǫ) ∈ EM(Ω). Now that it is clear that a solution
exists for (5.14) for eachǫ ∈ (0, 1], it is necessary to establish estimates that
show that the net of solutions(uǫ) is in EM(Ω). That is, we want to show that for
eachk ∈ N and all multi-indices|β| ≤ k, there existsa ∈ R such that

sup
x∈Ω

{|Dβuǫ(x)|} = O(ǫa).

By standard interpolation inequalities, it suffices to showthat forγ ∈ (0, 1) and
eachk ∈ N, there exists ana ∈ R such that

|uǫ|k,γ;Ω = O(ǫa).

By Theorem 3.1, we have that ifuǫ is a solution to (5.14) with coefficients satis-
fying (5.15), then

|uǫ|2,γ;Ω ≤ C

(

Λǫ

λǫ

)3

(|uǫ|0;Ω + |ρǫ|2,γ;Ω +

K
∑

i=1

|biǫ(uǫ)
ni|0,γ;Ω). (6.3)

Observe that

|uni
ǫ |0,γ;Ω ≤ |uni

ǫ |0;Ω + ni[uǫ]0,γ;Ω|uǫ|
ni−1
0;Ω (6.4)

if ni > 0 and

|uni
ǫ |0,γ;Ω ≤ |uni

ǫ |0;Ω +
1

|u−ni
ǫ |20;Ω

(−ni)[uǫ]0,γ;Ω|uǫ|
−ni−1
0;Ω , (6.5)

if ni < 0. The above inequality implies that

|uǫ|2,γ;Ω ≤ C

(

Λǫ

λǫ

)3

(|uǫ|0;Ω + |ρǫ|2,γ;Ω (6.6)

+
K
∑

i=1

|biǫ(x)|0,γ;Ω(C1(αǫ, βǫ, ni) + C2(ni, αǫ, βǫ)|uǫ|0,γ;Ω)),

where

C1(ni, αǫ, βǫ) = βni
ǫ and C2(ni, αǫ, βǫ) = niβ

ni−1
ǫ , if ni > 0 and

C1(ni, αǫ, βǫ) = αni
ǫ and C2(ni, αǫ, βǫ) =

(−ni)β
−ni−1
ǫ

α−2ni
ǫ

if ni < 0.

Application of the interpolation inequality

|uǫ|0,γ ≤ C(δ−1
ǫ |uǫ|0 + δǫ|uǫ|2,γ),
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whereδǫ is arbitrarily small andC is independent ofδǫ, implies that

|uǫ|2,γ;Ω ≤ C

(

Λǫ

λǫ

)3

(|uǫ|0;Ω + |ρǫ|2,γ;Ω (6.7)

+

K
∑

i=1

|biǫ(x)|0,γ;Ω(C1(ni, αǫ, βǫ)

+ C2(ni, αǫ, βǫ)(C(δ
−1
ǫ |uǫ|0;Ω + δǫ|uǫ|2,γ;Ω)))).

Therefore,
(

1− δǫ

(

Λǫ

λǫ

) K
∑

i=1

|biǫ(x)|0,γ;ΩC2(ni, αǫ, βǫ)

)

|uǫ|2,γ;Ω (6.8)

≤ C

(

Λǫ

λǫ

)3

(|uǫ|0;Ω + |ρǫ|2,γ;Ω

+
K
∑

i=1

|biǫ(x)|0,γ;Ω(C1(ni, αǫ, βǫ) + C2(ni, αǫ, βǫ)δ
−1
ǫ |uǫ|0;Ω)).

But given the assumptions onΛǫ, λǫ, the bounds previously established for the
nets(αǫ) and(βǫ) in Lemma 5.6, and given that(biǫ(x)) ∈ EM(Ω), there exists
ǫ0 ∈ (0, 1), a ∈ R andC > 0 such that for allǫ ∈ (0, ǫ0),

(

Λǫ

λǫ

) K
∑

i=1

|biǫ(x)|0,γC2(ni, αǫ, βǫ) ≤ Cǫa.

Therefore, choosing

δǫ =
1

2Cǫa
,

it is clear that forǫ ∈ (0, ǫ0),

|uǫ|2,γ;Ω ≤ C

(

Λǫ

λǫ

)3

(|uǫ|0;Ω + |ρǫ|2,γ;Ω (6.9)

+

K
∑

i=1

|biǫ(x)|0,γ;Ω(C1(ni, αǫ, βǫ) + C2(ni, αǫ, βǫ, ǫ
a)|uǫ|0;Ω)).

Given that(αǫ), (βǫ) ∈ C, αǫ ≤ uǫ ≤ βǫ and(ρǫ), (biǫ) ∈ EM(Ω), the above
inequality implies that for somea ∈ R,

|uǫ|2,γ;Ω = O(ǫa).

Now we need to utilize theǫ-growth conditions on|uǫ|2,γ;Ω and induction to show
that for anyk > 2 that

|uǫ|k,γ;Ω = O(ǫa) for somea ∈ R. (6.10)

Let (uǫ) be a smooth net of solutions to (6.2) and additionally assumethat (6.10)
holds for allj ≤ k. Letν be a multi-index of lengthk−1. Then by differentiating
both sides of (6.2), we see that for eachǫ, uǫ satisfies the Dirichlet problem

N
∑

i,j=1

Dν(−Di(a
ij
ǫ Djuǫ)) = −

K
∑

i=1

Dν(biǫu
ni
ǫ ) in Ω (6.11)

Dνuǫ = Dνρǫ on∂Ω.
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Rearranging the above equation and applying the multi-index product rule we
find that

N
∑

i,j=1

aijǫ Dij(D
νuǫ) = −

N
∑

i,j=1

Dν((Dia
ij
ǫ )(Djuǫ)) (6.12)

−
N
∑

i,j=1

∑

σ+µ=ν

σ 6=ν

ν!

σ!µ!
(Dµaijǫ )(D

σDijuǫ)

+
K
∑

i=1

∑

σ+µ=ν

ν!

σ!µ!
(Dµbiǫ)(D

σ((uǫ)
ni)).

Therefore, we may apply Theorem 3.1 to (6.12) to conclude that for an arbitrary
multi-indexν such that|ν| = k − 1,

|Dνuǫ|2,γ;Ω ≤ C

(

Λǫ

λǫ

)3

(|Dνuǫ|0;Ω + |Dνρǫ|2,γ;Ω (6.13)

+ |
N
∑

i,j=1

Dν((Dia
ij
ǫ )(Djuǫ))|0,γ;Ω

+
N
∑

i,j=1

∑

σ+µ=ν

σ 6=ν

ν!

σ!µ!
|Dµaijǫ |0,γ;Ω|D

σDijuǫ|0,γ;Ω

+
K
∑

i=1

∑

σ+µ=ν

ν!

σ!µ!
|Dµbiǫ|0,γ;Ω|D

σ((uǫ)
ni)|0,γ;Ω)

≤ C

(

Λǫ

λǫ

)3

(|Dνuǫ|0;Ω + |Dνρǫ|2,γ;Ω

+

N
∑

i,j=1

∑

σ+µ=ν

ν!

σ!µ!
|Dµ(Dia

ij
ǫ )|0,γ;Ω|D

σ(Djuǫ)|0,γ;Ω

+
N
∑

i,j=1

∑

σ+µ=ν

σ 6=ν

ν!

σ!µ!
|Dµaijǫ |0,γ;Ω|D

σDijuǫ|0,γ;Ω

+
K
∑

i=1

∑

σ+µ=ν

ν!

σ!µ!
|Dµbiǫ|0,γ;Ω|D

σ((uǫ)
ni)|0,γ;Ω).

By our inductive hypothesis and the assumptions on the coefficients, it is imme-
diate that every term in the above expression isO(ǫa) for somea ∈ R except for
the last term. So to show

|Dνuǫ|2,γ;Ω = O(ǫa) for somea ∈ R,

it suffices to show that

K
∑

i=1

∑

σ+µ=ν

ν!

σ!µ!
|Dµbiǫ|0,γ;Ω|D

σ((uǫ)
ni)|0,γ;Ω = O(ǫa) for somea ∈ R.
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Given thatbiǫ ∈ EM(Ω) for each1 ≤ i ≤ K,

|Dµbiǫ|0,γ;Ω = O(ǫa) for somea ∈ R.

Therefore, it is really only necessary to show that for any multi-indexσ, such that
|σ| = j ≤ k − 1, that there exists ana ∈ R such that

|Dσ((uǫ)
ni)|0,γ;Ω = O(ǫa).

But observe thatDσ((uǫ)
ni) is a sum of terms of the form

(uǫ)
ni−mDσ1uǫD

σ2uǫ · · ·D
σmuǫ,

whereσ1+σ2+ · · ·σm = σ andm ≤ j ≤ k−1. This follows immediately from
the chain rule. Therefore we have the following bound:

|Dσ((uǫ)
ni)|0,γ;Ω ≤ (ni)|(uǫ)

ni−1|0,γ;Ω|D
σuǫ|0,γ;Ω (6.14)

+
∑

σ1+σ2=σ

σ!

σ1!σ2!
(ni)(ni − 1)|(uǫ)

ni−2|0,γ;Ω

· |Dσ1uǫ|0,γ;Ω|D
σ2uǫ|0,γ;Ω + · · ·

+
∑

σ1+σ2+···+σj=σ

σ!

σ1!σ2! · · ·σj !
(ni)(ni − 1)

· · · (ni − j)|(uǫ)
ni−j |0,γ;Ω|D

σ1uǫ|0,γ;Ω

· · · |Dσjuǫ|0,γ;Ω.

Using (6.4) and (6.5), for eachm ≤ j we may bound the terms of the form
|(uǫ)

ni−m|0,γ;Ω using|uǫ|0,γ;Ω, α′
ǫ andβ ′

ǫ. Then our inductive hypothesis and the
growth conditions on(α′

ǫ) and(β ′
ǫ) imply that

|Dσ((uǫ)
ni)|0,γ;Ω = O(ǫa) for somea ∈ R

This implies that

|Dνuǫ|2,γ;Ω = O(ǫa) for somea ∈ R.

As ν was an arbitrary multi-index such that|ν| = k − 1, this implies there exists
a ∈ R such that

|uǫ|k+1,γ;Ω = O(ǫa).

Therefore,(uǫ) ∈ EM(Ω).
Step 5:Verify that the solution is well-defined. Proposition 3.10 and the definition of

the Dirichlet problem inG(Ω) given in Section 3.5 imply that[(uǫ)] is indeed a
solution to the problem

Au = 0 in Ω, (6.15)

u = ρ on∂Ω,

in G(Ω). To see this, we consider other representatives(aijǫ ), (b
i

ǫ), (ρǫ), and(uǫ)
of [(aijǫ )], [(b

i
ǫ)], [(ρǫ)], and [(uǫ)]. Then the proof of Proposition 3.10 clearly

implies that

−
N
∑

i,j=1

Di(a
ij
ǫ Djuǫ) +

K
∑

i=1

b
i

ǫ(uǫ)
ni = ηǫ in Ω, (6.16)

uǫ = ρǫ + ηǫ on∂Ω,
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whereηǫ ∈ N (Ω) andηǫ is a net of functions satisfying (3.25). But this implies
that this choice of representatives also satisfies (6.15) inG(Ω), so our solution
[(uǫ)] is independent of the representatives used.

�

This completes our proof of Theorem 4.1. We now conclude by giving a brief sum-
mary and making some final remarks.

7. SUMMARY AND REMARKS

We began the paper with an example to motivate the Colombeau Algebra method for
solving the target semilinear problem (1.11) with potentially distributional data. In par-
ticular, in Section 2 we proved the existence of a solution toa simpler ill-posed critical
exponent problem (1.12) in Proposition 2.4. Our proof technique consisted of mollifying
the data of the original problem, and then solving a sequenceof ”approximate” prob-
lems with the smooth coefficients. We then obtained a sequence of solutions that yielded
a convergent subsequence. This proof framework, which required only basic elliptic
PDE theory, was modeled on the more general Colombeau approach that we then subse-
quently developed and applied in the remainder of the paper to solve the more difficult
problem (1.11). Following the approach of Mitrovic and Pilipovic in [18], in Section 3
we stated a number of preliminary results and developed necessary technical tools for
solving (1.11). Among these tools and results were the explicit a priori estimates found
in [18], and a description of the Colombeau framework in which the coefficients and data
were embedded. In particular, in Section 3.1 we introduced notation for Hölder norms
and stated twoa priori estimates from [6] that were made more precise by Mitrovic and
Pilipovic in [18]. In Section 3.2, we then introduced the general framework for con-
structing Colombeau-type algebras and the Colombeau algebraG(Ω) used in this paper.

We then stated the main result in Section 4, namely Theorem 4.1, and also gave a
statement and proof of the method of sub- and super solutionsas Theorem 4.3. We then
gave a detailed outlined of the plan of the proof of Theorem 4.1, the execution of which
was the focus of the remainder of the paper. In Section 4.3 we also discussed methods
to embed (1.11) into the algebra for applying our Colombeau existence theory. The
remainder of the paper was then dedicated to developing the remaining tools necessary
to proving Theorem 4.1, and then carrying out the proof. In Section 5 we determinea
priori L∞ bounds of solutions to our semilinear problem and a net of sub- and super-
solutions satisfying explicitǫ-growth estimates. We first determined a net ofL∞ bounds
for positive solutions to our problem. In Section 5.2 we thenshowed that this net ofL∞

bounds is in fact a net of sub- and super-solutions containedin C, the ring of generalized
constants described in Section 3.2. Finally, after developing sub- and super-solutions and
some related results in Section 5, we proved the main result,Theorem 4.1 in Section 6,
following the plan we had laid out in Section 4.

We note that although the problem we set up in a manner similarto that used by Mitro-
vic and Pilipovic in [18], our approach to solving our semilinear problem was distinct
from theirs; we first determined a net of solutions(uǫ) to the family of semilinear prob-
lems (6.2) by using the method of sub-and super-solutions (Theorem 4.3), and our net
of sub- and super-solutions determined in Section 5.2. Onceour net of solutions was
determined, we then employed Theorems 3.1 and our net of sub-and super-solutions to
show that our net of solutions was contained inEM(Ω).

In this article we have attempted to develop some basic toolsto allow for a more
general study of the Einstein constraint equations with distributional data. Our goal was
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to extend the current solution theory for scalar, critical exponent semilinear problems
such as the Lichnerowicz equation, allowing for more irregular data than is currently
covered by the existing solutions theories (cf. [9, 10] for asummary of the known results
for the CMC, near-CMC, and Far-CMC cases through 2009). As a next step, we hope to
use the tools developed in this article to extend the near-CMC and Far-CMC existence
framework for rough metrics developed in [9, 15, 16, 3] to cover the rough data example
studied by Maxwell in [17].
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Matemática [Mathematical Notes], 90.

[5] L. C. Evans.Partial differential equations, volume 19 ofGraduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 1998.

[6] D. Gilbarg and N. S. Trudinger.Elliptic partial differential equations of second order. Classics in
Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[7] M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer.Geometric theory of general-
ized functions with applications to general relativity, volume 537 ofMathematics and its Applica-
tions. Kluwer Academic Publishers, Dordrecht, 2001.

[8] S. W. Hawking and G. F. R. Ellis.The large scale structure of space-time. Cambridge University
Press, London, 1973. Cambridge Monographs on MathematicalPhysics, No. 1.

[9] M. Holst, G. Nagy, and G. Tsogtgerel. Far-from-constantmean curvature solutions of Einstein’s
constraint equations with positive Yamabe metrics.Phys. Rev. Lett., 100(16):161101, 4, 2008.

[10] M. Holst, G. Nagy, and G. Tsogtgerel. Rough solutions ofthe Einstein constraints on closed mani-
folds without near-CMC conditions.Comm. Math. Phys., 288(2):547–613, 2009.

[11] T. J. R. Hughes, T. Kato, and J. E. Marsden. Well-posed quasi-linear second-order hyperbolic systems
with applications to nonlinear elastodynamics and generalrelativity. Arch. Rational Mech. Anal.,
63(3):273–294 (1977), 1976.

[12] J. Isenberg. Constant mean curvature solutions of the Einstein constraint equations on closed mani-
folds.Classical Quantum Gravity, 12(9):2249–2274, 1995.

[13] S. Klainerman and I. Rodnianski. Rough solutions of theEinstein-vacuum equations.Ann. of Math.
(2), 161(3):1143–1193, 2005.
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