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General Relativity
Einstein’s general theory of relativity states that spacetime has the
structure of a pseudo-Riemannian 4-manifoldM.

The theory predicts that accelerating masses produce gravitational
waves of perturbations in the metric tensor.

Newtonian vs. General Relativistic pictures:

This space-time bending is governed by the Einstein Equations.
Black-Hole merger depiction (shamelessly stolen from LIGO website):

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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LIGO

LIGO (Laser Interferometer Gravitational-wave Observatory) is one of
several recently constructed gravitational detectors.

The design of LIGO is based on measuring distance changes between
objects in perpendicular directions as the ripple in the metric tensor
propagates through the device.

The two L-shaped LIGO observatories (in Washington and Louisiana),
with legs at 1.5m meters by 4km, have phenomenal sensitivity, on the
order of 10−15m to 10−18m.

The LIGO arms in Louisiana and Hanford, Washington:

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The Einstein Equations
Riemann (curvature) tensor R d

abc arises as failure
of commutativity of covariant differentiation:

Flat: V a
,bc − V a

,cb = 0, V a
,b =

∂V a

∂xb
.

Curved: V a
;bc −V a

;cb = Ra
dbcV d , V a

;b = V a
,b + Γa

bcV c ,

where

Ra
dbc = Γa

bd,c − Γa
cd,b + Γa

ecΓe
bd − Γa

ebΓe
cd .

The ten equations for the ten independent components of the
symmetric spacetime metric tensor gab are the Einstein
Equations: Gab = κTab, 0 6 a 6 b 6 3, κ = 8πG/c4,

R d
abc ; Riemann (curvature) tensor

Rab = R c
acb , R = R a

a ; Ricci tensor; scalar curvature

Gab = Rab − 1
2 Rgab, Tab; Einstein/stress-energy tensors

Initial-value formulations well-posed (cf. Hawking & Ellis); Various
formalisms yield constrained (weakly/strongly/symmetric) hyper-
bolic evolution systems on space-like 3-manifolds S(t) for a Rie-
mannian ĥab, possibly also extrinsic curvature k̂ab ∼ d

dt ĥab.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Einstein Constraints and Conformal Method
Twelve-component Einstein evolution system for (ĥab, k̂ab) on a foliation.

Constrained by coupled eqns on spacelikeM =Mt , with τ̂ = k̂abĥab,
3R̂ + τ̂ 2 − k̂abk̂ab − 2κρ̂ = 0, ∇̂aτ̂ − ∇̂bk̂ab − κ̂ja = 0.

York conformal decomposition: split initial data into 8 freely specifiable
pieces plus 4 determined via: ĥab = φ4hab, τ̂ = k̂abĥab = τ , and

k̂ab = φ−10[σab + (Lw)ab] +
1
4
φ−4τhab, ĵa = φ−10ja, ρ̂ = φ−8ρ.

Produces coupled elliptic system for conformal factor φ and a wa:

−8∆φ+ Rφ+
2
3
τ 2φ5 − (σab + (Lw)ab)(σab + (Lw)ab)φ−7 − 2κρφ−3 = 0,

−∇a(Lw)ab +
2
3
φ6∇bτ + κjb = 0.

Differential structure onM defined through background 3-metric hab:

(Lw)ab = ∇awb +∇bwa− 2
3

(∇cwc)hab, ∇bV a = V a
;b = V a

,b + Γa
bcV c ,

V a
,b =

∂V a

∂xb , Γa
bc =

1
2

had
(
∂hdb

∂xc +
∂hdc

∂xb −
∂hbc

∂xd

)
. (Γa

bc = Γa
cb)

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The Conformal Method
Lichnerowicz and Choquet-Bruhat Papers: 1944 and 1958

A. Lichnerowicz. L’integration des équations de la gravitation
relativiste et le problème des n corps. J. Math. Pures Appl.,
23:37–63, 1944.
Y. Choquet-Bruhat. Théorèm d’existénce en mécanique des
fluides relativistes. Bull. Soc. Math. France, 86:155–175, 1958.

Some Key Conformal Method Papers: 1971–2014
J. York. Gravitational degrees of freedom and the initial-value
problem. Phys. Rev. Lett., 26(26):1656–1658, 1971.
J. York. Conformally invariant orthogonal decomposition of
symmetric tensor on Riemannian manifolds and the initial-value
problem of general relativity. J. Math. Phys., 14(4):456–464, 1973.
J. York. Conformal “thin-sandwich” data for the initial-value
problem of general relativity. Phys. Rev. Lett., 82:1350–1353,
1999.
H. Pfeiffer and J. York, Jr. Extrinsic curvature and the Einstein
constraints. Phys. Rev. D, 67:044022, 2003.
D. Maxwell. The conformal method and the conformal
thin-sandwich method are the same. arXiv:1402.5585v2, 2014.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The Conformal Method as an Elliptic System
LetM be a space-like Riemannian 3-manifold with (possibly empty)
boundary submanifold ∂M, split into disjoint submanifolds satisfying:

∂DM∪ ∂NM = ∂M, ∂DM∩ ∂NM = ∅. (∂DM∩ ∂NM = ∅)

Metric hab associated withM induces boundary metric σab, giving
boundary value formulation of conformal method for φ and wa:

Lφ+ F (φ,w) = 0, inM, (Hamiltonian)

Lw + F(φ) = 0, inM, (Momentum)

(Lw)abνb + Ca
bwb = V a

φ on ∂NM, and wa = wa
D on ∂DM,

(∇aφ)νa + kw (φ) = g on ∂NM, and φ = φD on ∂DM,

where:
Lφ = −∆φ, (Lw)a = −∇b(Lw)ab,

F (φ,w) = aRφ+ aτφ5 − awφ
−7 − aρφ−3, F(φ) = bb

τφ
6 + bb

j ,

with:

aR = R
8 , aτ = τ2

12 , aw = 1
8 [σab + (Lw)ab]2, aρ = κρ

4 , bb
τ = 2

3∇
bτ , bb

j = κjb,

(Lw)ab = ∇awb +∇bwa − 2
3 (∇cwc)hab, ∇bV a = V a

;b = V a
,b + Γa

bcV c ,

V a
,b =

∂V a

∂xb , Γa
bc =

1
2

had
(
∂hdb

∂xc +
∂hdc

∂xb −
∂hbc

∂xd

)
. (Γa

bc = Γa
cb)
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Well-posedness, estimates, approximation, ...
This problem has the form:

Find u ∈ ū + X such that 〈F (u), v〉 = 0, ∀v ∈ Y , (1)

where X and Y are B-spaces and F : X → Y ∗.

Given approximation u0 ≈ u, Newton iteration for u has form:

(a) Find w ∈ X such that: 〈F ′(uk )w , v〉 = −〈F (uk ), v〉+ r , ∀v ∈ Y
(b) Set: uk+1 = uk + λw

One discretizes (a)-(b) at “last moment” using your favorite method.

Many questions about the constraint (and evolution) eqns remain open:
1 Is there existence, uniqueness, stability?
2 Is there multiplicity, with folds or bifurcation phenomena?
3 How smooth is X?
4 Can one build good approximation spaces Xh ≈ X?
5 Performance of linear approximation for (1)?
6 Performance of nonlinear approximation for (1)?
7 Can we produce such (linear and nonlinear) approximations with

optimal (linear) space and time complexity?

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The 1973–1995 CMC Results
∇bτ = 0: Constant Mean Curvature (CMC):⇒ constraints de-couple.

There were a number of CMC results generated during 1973–1995 by
exploiting the fact that the constraint equations decouple.

You can solve the momentum constraint equation once and for all, and
then you solve the Hamiltonian constraint once.

The research came down to understanding under what conditions the
Hamiltonian constraint was solvable.

Some Key CMC Papers: 1974–1995
N. Ó. Murchadha and J. York. Initial-value problem of general
relativity I. General formulation and physical interpretation. Phys.
Rev. D, 10(2):428–436, 1974.
N. Ó. Murchadha and J. York. Initial-value problem of general
relativity II. Stability of solution of the initial-value equations. Phys.
Rev. D, 10(2):437–446, 1974.
J. Isenberg. Constant mean curvature solution of the Einstein
constraint equations on closed manifold. Class. Quantum Grav.
12 (1995), 2249–2274.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The 1996–2007 Near-CMC Results
∇bτ 6= 0: Non-CMC case: ⇒ constraints couple.

In the Non-CMC case, the constraints couple together; through 1996
there were no results, until the Isenberg-Moncrief paper of 1996 under
near-CMC conditions (to be explained). This led to several results.

Some of the Near-CMC Papers: 1996–2007
J. Isenberg and V. Moncrief, A set of nonconstant mean curvature
solution of the Einstein constraint equations on closed manifolds,
Class. Quantum Grav. 13 (1996), 1819–1847.

J. Isenberg and J. Park. Asymptotically hyperbolic non-constant
mean curvature solutions of the Einstein constraint equations.
Class. Quantum Grav., 14:A189–A201, 1997.

Y. Choquet-Bruhat, J. Isenberg, and J. York. Einstein constraint on
asymptotically Euclidean manifolds. Phys. Rev. D, 61:084034,
2000.

P. Allen, A. Clausen, and J. Isenberg. Near-constant mean
curvature solutions of the Einstein constraint equations with
non-negative Yamabe metrics. Available as arXiv:0710.0725
[gr-qc], 2007.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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A Look at the 1996 Near-CMC Result
Fixed-point arguments involve composition G(φ) = T (φ,S(φ)), where:

1 Given φ, solve MC for w : w = S(φ)

2 Given w , solve HC for φ: φ = T (φ,w)

Map S : X → R(S) ⊂ Y is MC solution map;
Map T : X ×R(S)→ X is some fixed-point map for HC.

Theorem: (Isenberg-Moncrief) For case R = −1 on a closed manifold
(hab ∈ Y−), strong smoothness assumptions, and near-CMC conditions,
Isenberg-Moncrief show this is a contraction in Hölder spaces:

[φ(k+1),w (k+1)] = G([φ(k),w (k)]).

Proof Outline: Maximum principles, barriers, Banach algebra
properties, plus contraction-mapping argument.

Theorem 1 (Contraction Mapping Theorem)
Let X be Banach and U ⊂ X nonempty & closed. If G : X → X is a
k-contraction on U:

‖G(u)−G(v)‖X ≤ k‖u − v‖X , 0 6 k < 1, ∀u, v ∈ U,

then there exists a (unique) fixed-point u ∈ U ⊂ X satisfying u = G(u).
UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Yamabe Classes: Closed, Smooth or Rough
Yamabe classification of smooth metrics: Let u > 0 solve:
−8∆u + Ru = Ruu5. Then:

Ru > 0⇒ hab ∈ Y+, Ru < 0⇒ hab ∈ Y−, Ru = 0⇒ hab ∈ Y0.

Yamabe classification of rough metrics: The Yamabe problem on closed
manifolds for rough metrics is still open; however, one can still get the
following result [HNT09] which is all we need here:

Theorem 2 (Yamabe Classification of Rough Metrics)
Let (M, h) be a smooth, closed, connected Riemannian manifold with
dimension n > 3 and with a metric h ∈ W s,p, where we assume sp > n
and s > 1. Then, the followings hold:

• µ2? > 0 iff there is a metric in [h] with continuous positive scalar
curvature.

• µ2? = 0 iff there is a metric in [h] with vanishing scalar curvature.

• µ2? < 0 iff there is a metric in [h] with continuous negative scalar
curvature.

In particular, two conformally equivalent metrics cannot have scalar
curvatures with distinct signs.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Impact of the near-CMC restriction
To establish contraction properties for coupled PDE systems gives
coupling restrictions; for the constraints, the restriction that results is the
near-CMC condition:

‖∇τ‖r < C inf
M
|τ |, (2)

where particular Lr norm depends on context. Condition appears in two
distinct places:

(1) Construction of the contraction G,
(2) Construction of the set U on which G is a contraction.

The near-CMC condition is basically a condition that ensures the
coupling between the two equations is weak.

In [HNT08, HNT09, Max09], a non-CMC analysis framework was
developed by relacing contraction argument with a Schauder argument,
combined with construction of global barriers.

The framework in [HNT08, HNT09] required the existence of matter
sources to construct sub-solutions; this was extended to vacuum (no
matter sources) in [Max09], which also contains other new results.

Approach places no limit on strength of equation coupling.
UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The 2008 Framework: Mappings S and T
We outline the near-CMC-free fixed-point argument from [HNT09].

We first make precise the definitions of the maps S and T .

To deal with the non-trivial kernel that exists for L on closed manifolds,
fix an arbitrary positive shift s > 0. Now write the constraints as

Lsφ+ Fs(φ,w) = 0, (3)

(Lw)a + F(φ)a = 0, (4)
where Ls : W 2,p → Lp and L : W 2,p → Lp are defined as

Lsφ := [−∆ + s]φ, (Lw)a := −∇b(Lw)ab,

and where Fs : [φ−, φ+]×W 2,p → Lp and F : [φ−, φ+]→ Lp are

Fs(φ,w) := [aR − s]φ+ aτφ5 − awφ
−7 − aρφ−3, F(φ)a := ba

τφ
6 + ba

j .

Introduce the operators S : [φ−, φ+]→ W 2,p and
T : [φ−, φ+]×W 2,p → W 2,p as

S(φ) := −L−1F(φ), (5)

T (φ,w) := −L−1
s Fs(φ,w). (6)

Both maps are well-defined when s > 0 (Ls is invertible) and when there
are no conformal Killing vectors (L is invertible).

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Schauder Approach to get at Non-CMC
Alternatives to Contraction Mapping Theorem that are more topological:

Theorem 3 (Schauder Theorem)
Let X be a Banach space, and let U ⊂ X be a non-empty, convex,
closed, bounded subset. If G : U → U is a compact operator, then there
exists a fixed-point u ∈ U such that u = G(u).

Here is a variation of Schauder tuned for the constraints.

Theorem 4 (Coupled Schauder Theorem)
Let X and Y be Banach spaces, and let Z be a Banach space with
compact embedding X ↪→ Z. Let U ⊂ Z be non-empty, convex, closed,
bounded, and let S : U → R(S) ⊂ Y and T : U ×R(S)→ U ∩ X be
continuous maps. Then, there exist w ∈ R(S) and φ ∈ U ∩ X such that

φ = T (φ,w) and w = S(φ). (7)

Proof Outline: Show G(φ) = i ◦ T (φ,S(φ)) : U ⊂ Z → U ⊂ Z is
compact and then use Schauder, where i : X → Z is (compact)
canonical injection.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Global barriers and a priori L∞-bounds
To remove the near-CMC condition we use the following approach:

Compactness-type fixed-point arguments (Coupled Schauder).
Identifying the non-empty, convex, closed, bounded set U.
Establishing properties of the constraint maps S and T .

Note: Establishing continuity of maps S and T , identifying the set U,
and establishing convergence/optimality of numerical methods, will ALL
depend on construction of compatible global barriers φ− and φ+ that
are free of the near-CMC condition. (Compatibility: 0 6 φ− 6 φ+)

Sub- and super-solutions, or barriers to HC satisfy:

−∆φ− + aRφ− + aτ φ5
− − aw φ

−7
− − aρ φ−3

− 6 0,

−∆φ+ + aRφ+ + aτ φ5
+ − aw φ

−7
+ − aρ φ−3

+ > 0.

Barriers related to a priori L∞-bounds on any solution (if one exists):

0 < α 6 φ 6 β <∞.
When nonlinearity monotone decreasing, can show barriers also a priori
L∞-bounds. (One can establish bounds directly; see [HNT09].)

Working in ordered Banach spaces; need for non-empty order-cone
interval U = [φ−, φ+] leads to concept of global barriers: Barriers for HC
for any aw generated from solutions w to MC with source φ ∈ [φ−, φ+].

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Existence/estimates for momentum constraint
Assume for the moment we have global barriers (must still find them),
and they give us (must verify) a non-empty, convex, closed, bounded
subset U ⊂ Z of the Banach space Z , and that in addition, we can show
(must verify) that T is invariant on U.

To use the Coupled Schauder Theorem to establish existence, it would
remain to establish continuity properties of momentum and Hamiltonian
constraint mappings S and T . First consider S (see [HNT09]).

Theorem 5 (MC – Existence and Estimates)
Let (M, hab) be a 3-dimensional, closed, C2, Riemannian manifold, with
hab having no conformal Killing vectors, and let ba

τ , ba
j ∈ Lp with p > 2

and φ ∈ L∞; Then, equation (4) has a unique solution wa ∈ W 2,p with

c ‖w‖2,p 6 ‖φ‖6
∞ ‖bτ‖p + ‖bj‖p, (8)

where c > 0 is a constant.

Proof Outline: Korn inequalities (Gårding) + Riesz-Schauder theory.

Generalizations appear in [HNT09], allowing rougher metric and
coefficients, giving existence down to wa ∈ W 1,p, with real p > 2.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Key inequalities for momentum constraint
Under the assumption that any φ ∈ L∞ appearing as the source in the
momentum constraint equation (4) satisfies for some compatible
barriers 0 < φ− 6 φ+ <∞

φ ∈ U = [φ−, φ+] ⊂ L∞,

then one can establish continuity of S (see [HNT09]). One can also
show stronger boundedness and Lipschitz properties:

‖S(φ)‖Y 6 CSB, ‖S(φ1)− S(φ2)‖Y 6 CSL‖φ1 − φ2‖Z ,

Y = W 2,p, Z = L∞.
The inequality in equation (8) also gives for p > 3 the following estimate:

aw 6 K1 ‖φ‖12
∞ + K2, (9)

with K1 = ( cscL√
2c

)2‖bτ‖2
p, K2 = 1

4‖σ‖
2
∞ + ( cscL√

2c
)2‖bj‖2

p, where cs is the
constant in the embedding W 1,p ↪→ L∞, and cL is a bound on the norm
of L : W 2,p → W 1,p.

Inequality (9) will appear in a critical part of the analysis of the coupling
between the two equations. Note that there is no smallness assumption
on ‖bτ‖p, so the near-CMC condition is not required for these results.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Existence/estimates for Hamiltonian constraint
Turn now to Hamiltonian map T . From e.g. [HNT09] we have

Theorem 6 (HC – Existence and Estimates)
Let (M, hab) be a 3-dimensional, C2, closed Riemannian manifold. Let
free data τ 2, σ2 and ρ be in Lp, with p > 2. Let φ− and φ+ be barriers
to (3) for particular vector wa ∈ W 1,2p. Then, there exists solution
φ ∈ [φ−, φ+] ∩W 2,p of HC (3). Furthermore, if metric hab in positive
Yamabe class, then φ is unique.

Proof Outline: Barriers plus monotone increasing maps.

Generalizations appear in [HNT09], allowing rougher metric and
coefficients, giving existence down to φ ∈ W 1,p, with real p > 2.

This result, together MC results above and barrier results below, give
required continuity properties for map T (see [HNT09] for details). One
can show stronger boundedness and Lipschitz conditions:

‖T (φ,w)‖X 6 CTB, ‖T (φ1,w)− T (φ2,w)‖X 6 CTL‖φ1 − φ2‖Z ,

‖T (φ,w1)− T (φ,w2)‖X 6 CTLW‖w1 − w2‖Y ,

X = W 2,p,Y = W 2,p, Z = L∞.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Construction of the nonempty closed set U
Remaining assumptions for use of the Coupled Schauder Theorem are
(A) Let U ⊂ Z be non-empty, convex, closed, and bounded (w.r.t.

vector space, topological space, normed space structure of Z ).
(B) T is invariant on U.

We take U = [φ−, φ+]t,q ∩ BR(0), for appropriate t > 0, 1 6 q 6∞,
where BR(0) is closed ball in Z of radius R about 0, and verify (A).
For brevity denote [φ−, φ+]q = [φ−, φ+]0,q , and [φ−, φ+] = [φ−, φ+]0,∞.

Lemma 7 (Order cone intervals in W t ,q)
For t > 0, 1 6 p 6∞, the set

U = [φ−, φ+]t,q = {φ ∈ W t,q : φ− 6 φ 6 φ+} ⊂ W t,q

is convex with respect to the vector space structure of W t,q and closed
in the topology of W t,q . For t = 0, 1 6 p 6∞, the set U is also
bounded with respect to the metric space structure of Lq = W 0,q .

Proof Outline: Convexity straightforward; closedness follows since
norm convergence in Lq , 1 6 q 6∞, implies pointwise subsequential
convergence a.e., and from continuous embedding W t,q ↪→ Lq for t > 0;
boundedness when t = 0 since order cone Lq

+ is normal.
UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Invariance of T on U
”Global” property of barriers ensures T invariant on [φ−, φ+]s̃,p̃. Barrier
compatibility ensures interval non-empty, convex, and closed.

In smooth case can take s = 0, then U = [φ−, φ+]0,p̃ bounded, since
order cone structure on Lp̃ is normal.

In weak metric case hab ∈ W s,p, S and T not continuous for Z = L∞,
and must take Z = W s̃,p̃ to get continuity of S and T , then deal with
non-normal order structure on Z . (closed intervals not bounded).

For s̃ > 0, must then take U = [φ−, φ+]s̃,p̃ ∩ BR to ensure U is bounded,
where BR is the closed ball in Z of radius R.

It remains then only to establish invariance of T on BR .

Lemma 8 (Invariance of T on BR.)
Assume p ∈ ( 3

2 ,∞), s ∈ ( 3
p ,∞), that aw ∈ W s−2,p, and that ”suitable

conditions” on the other data hold. Then, for any s̃ ∈ ( 3
p , s] and for some

t ∈ ( 3
p , s̃) there exists a closed ball BR ⊂ W s̃,p of radius

R = O
(

[1 + ‖aw‖s−2,p]s̃/(s̃−t)
)

, such that
φ ∈ [φ−, φ+]s̃,p ∩ BM ⇒ T s(φ, aw) ∈ BM .

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Main 2008 Result: Non-CMC W 2,p solutions

Except barrier construction (must still find them), all results in place for
applying Coupled Schauder Theorem to constraints. Next (smooth)
result from [HNT08]; more general result from [HNT09] after.

Theorem 9 (Non-CMC existence without near-CMC)
Let (M, hab) be a 3-dimensional, smooth, closed Riemannian manifold
with metric hab in positive Yamabe class with no conformal Killing
vectors. Let τ ∈ W 1,p, with σ2, ja and ρ in Lp, with p > 3 and small
enough norms as given in Global Super-Solution Lemma so global
barriers φ− and φ+ exist for HC (3), with ρ 6≡ 0. Then, there exists
φ ∈ [φ−, φ+] ∩W 2,p and wa ∈ W 2,p solving constraint equations (3)-(4).

Proof Outline: We have the operators S : [φ−, φ+]→ W 2,p and
T : [φ−, φ+]×W 2,p → W 2,p which are again given by

S(φ) := −L−1F(φ), T (φ,w) := −L−1
s Fs(φ,w).

Note the mapping S is well-defined due to absence of conformal Killing
vectors, ensuring L is invertible. Mapping T well-defined by use of
positive shift s > 0, ensuring Ls also invertible (see [HNT09]).

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Proof outline (continued)

The constraint equations in (3)–(4) thus have precisely the form (7) for
use of the Coupled Schauder Theorem.

We have the reflexive Banach spaces X = W 2,p and Y = W 2,p, and
ordered Banach space Z = L∞ with normal order cone and compact
embedding W 2,p ↪→ L∞.

With our compatible barriers forming the L∞-interval U = [φ−, φ+], we
have by construction that U is non-empty as a subset of Lp, for
1 6 p 6∞. As noted earlier, the interval [φ−, φ+] ⊂ Lp is convex with
respect to the vector space structure of Lp, closed in the topology of Lp,
and bounded in the norm on Lp, for 1 6 p 6∞ (see [HNT09]).

It remains to show that S and T are continuous maps from their
respective domains to their respective ranges, and that T is invariant on
U. These properties follow from equation (8) and from the Hamiltonian
constraint theorem, with global barriers from the Global barriers
theorem, using standard inequalities. The result now follows from the
Coupled Schauder Theorem.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Sub-/super-solutions and a priori L∞-bounds
Proofs of the results existence results were based on:

Compactness-type fixed-point arguments (Coupled Schauder).
Identifying a non-empty, convex, closed, bounded set U.
Establishing continuity properties of constraint maps S and T .

Establishing continuity of maps S and T , identifying the set U, and
establishing convergence/optimality of numerical methods, all depend
on construction of compatible global barriers φ− and φ+ that are free of
the near-CMC condition. (Compatibility: 0 6 φ− 6 φ+)

Sub- and super-solutions, or barriers to HC satisfy:

−∆φ− + aRφ− + aτ φ5
− − aw φ

−7
− − aρ φ−3

− 6 0,

−∆φ+ + aRφ+ + aτ φ5
+ − aw φ

−7
+ − aρ φ−3

+ > 0.

Barriers related to a priori L∞-bounds on any solution (if one exists):

0 < α 6 φ 6 β <∞.
When nonlinearity monotone decreasing, can show barriers also a priori
L∞-bounds. (One can establish bounds directly; see [HNT09].)

Working in ordered Banach spaces; need for non-empty order-cone
interval U = [φ−, φ+] leads to concept of global barriers: Barriers for HC
for any aw generated from solutions w to MC with source φ ∈ [φ−, φ+].

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Near-CMC-free global barrier construction
Can one build Non-CMC barriers without Near-CMC conditions?

Lemma 10 (Near-CMC-Free Global Super-Solution)
Let (M, hab) be a 3-dimensional, smooth, closed Riemannian manifold
with metric hab in the positive Yamabe class with no conformal Killing
vectors. Let u be a smooth positive solution of the Yamabe problem

−∆u + aRu − u5 = 0, (10)

and define the Harnack-type constant k = u∧/u∨. If the function τ is
non-constant and the rescaled matter sources ja, ρ, and traceless
transverse tensor σab are sufficiently small, then

φ+ = εu, ε =
[

1
2K1k12

] 1
4 (11)

is a global super-solution of the Hamiltonian constraint.

Proof Outline: Using the notation

E(φ+) = −∆φ+ + aRφ+ + aτφ5
+ − awφ

−7
+ − aρφ−3

+ ,

we have to show E(φ+) > 0. The definition of φ+ = εu implies
−∆φ+ + aRφ+ = ε u5.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Proof outline (continued)
Using an estimate for aw (see [HNT09]), we have then

E(φ+) > −∆φ+ + aRφ+ −
K1(φ∧+)12 + K2

φ7
+

−
a∧ρ
φ3

+

> ε u5 − K1

[φ∧+
φ∨+

]12
φ5

+ −
K2

φ7
+

−
a∧ρ
φ3

+

.

Notice that φ∧+/φ∨+ = u∧/u∨ = k , therefore we have

E(φ+) > εu5
[
1− K1 k12ε4 − K2

ε8u12 −
a∧ρ
ε4u8

]
.

Choice of ε made in (11) is equivalent to condition 1/2 = 1− K1 k12ε4.
For this ε, impose on the free data σab, ρ and ja the condition

1
2
− K2

ε8(u∨)12 −
a∧ρ

ε4(u∨)8 > 0.

Thus for any K1 > 0, we can guarantee E(φ+) > 0.

Remarks:
Thus global super-solutions can be built by rescaling solutions to (10).
Existence of k related to Harnack inequality for Yamabe.
Compatible global sub-solutions available so that 0 < φ− 6 φ+.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Main Result 1: Non-CMC W s,p weak solutions
In [Max09] Maxwell extends Theorem 9 to the vacuum case.

In [HNT09] we extend Theorem 9 to rough solutions; the main results are the
following three theorems.

Theorem 11 (Non-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

admit no conformal Killing field and be in Y+(M), where p ∈ (1,∞) and
s ∈ (1 + 3

p ,∞) are given. Select q and e to satisfy:

1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

Assume that the data satisfies:

τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z otherwise, with z = 3q
3+max{0,2−e}q ,

σ ∈ W e−1,q , with ‖σ2‖∞ sufficiently small,

ρ ∈ W s−2,p ∩ L∞+ \ {0}, with ‖ρ‖∞ sufficiently small,

j ∈ W e−2,q , with ‖j‖e−2,q sufficiently small.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the constraints.

Remark: Weak metric hab ∈ W s,p requires verifying usual relationships for W s,p

available; gives conditions on exponents s and p to ensure e.g. Laplace-Beltrami
bilinear form is continuous. (Discussed at length in [HNT09, BH14].)

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Main Result 2: Near-CMC W s,p weak solutions

Theorem 12 (Near-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

admit no conformal Killing field, where p ∈ (1,∞) and s ∈ (1 + 3
p ,∞) are

given. Select q, e and z to satisfy:

• 1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

• e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

• z = 3q
3+max{0,2−e}q .

Assume τ satisfies near-CMC condition (2) with z above, and data satisfies:

• τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z if e 6 2,

• σ ∈ W e−1,q ,

• ρ ∈ W s−2,p
+ ,

• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab in Y−(M); hab conformally equiv to metric w/ scalar curvature (−τ2);

(b) hab in Y0(M) or Y+(M); either ρ 6≡ 0 and τ 6≡ 0 or τ ∈ L∞ and infM σ2

suff. large.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the constraints.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Main Result 3: CMC W s,p weak solutions

Theorem 13 (CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

where p ∈ (1,∞) and s ∈ ( 3
p ,∞) ∩ [1,∞) are given. With d := s − 3

p , select q
and e to satisfy:

• 1
q ∈ (0, 1) ∩ [ 3−p

3p , 3+p
3p ] ∩ [ 1−d

3 , 3+sp
6p ),

• e ∈ [1,∞) ∩ [s − 1, s] ∩ [ 3
q + d − 1, 3

q + d ] ∩ ( 3
q + d

2 ,∞).

Assume τ = const (CMC) and that the data satisfies:

• σ ∈ W e−1,q ,

• ρ ∈ W s−2,p
+ ,

• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab is in Y−(M); τ 6= 0;

(b) hab is in Y0(M); ρ 6≡ 0;

(c) hab is in Y+(M); τ 6= 0; ρ 6≡ 0.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein
constraints.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Exponent conditions for the non-CMC results

Figure: Range of e and q in Main Results 1 and 2, with
d = s − 3

p > 1.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Exponent conditions for the CMC results

Figure: Range of e and q in Main Result 3. Recall that
d = s − 3

p > 0.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015



Overview of
Non-CMC
Analysis

Frameworks for
Conformal

Method

Michael Holst

Einstein
Equations
GR and LIGO

Einstein Equations

Conformal Method

Frameworks
and Results
1973–1995: CMC

1996–2007: Near-CMC

2008 Non-CMC Result

2009 Extensions

2010 Limit Equation

2013 IFT

2014 Drift System

Some of our
Group’s Results
Rough Metrics

Compact Case

AE Case

Multiplicity Results

References

Prospects for other Non-CMC results

The “Schauder plus global barriers” framework in [HNT08, HNT09] has now
given Non-CMC results for several other cases:

Closed manifolds in vacuum [Max09].

Compact manifolds with (black-hole and other) boundary
[HT13, HMT14, Dilt14].

Asymptotically Euclidean (vacuum or with black-hole inner-boundaries)
[DIM14, BH14].

However, non-positive Yamabe cases present obstacle (see [HNT09]):

Lemma 14 (Near-CMC condition and aw bounds)
Let (M, h) be a 3-dimensional, smooth, closed Riemannian manifold with metric h ∈ W s,p in a
nonpositive Yamabe class, and let aτ be continuous. Let φ+ ∈ W s,p with φ+ > 0 be a global
super-solution to HC. Assume any vector field w ∈ W 1,2r solving MC with source φ 6 φ+ satisfies

aw 6 θK 1‖φ+‖12
∞ + θK 2,

with some positive constants θK 1 and θK 2. Moreover, assume this estimate is sharp in that for any x ∈ M
there exist an open neighborhood U 3 x and vector field w ∈ W 1,2r solving MC with source φ 6 φ+,
such that

aw = θK 1‖φ+‖12
∞ + θK 2 in U. (12)

Then, we have θK 1 6 supM aτ .

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The 2010 Limit Equation Technique
Dahl, Gicquaud, and Humbert [DGH14] study the vacuum case:

−2κq∆gφ+ Rgφ = −κτ 2φq−1 + |σ + Lw |2φ−q−1, (13)

∆Lw = κφq dτ. (14)

The notation here is:

(∆Lw)a = −∇b(Lw)ab, q =
2n

n − 2
, κ =

n − 1
n

. (15)

They prove the following result:

Theorem 15 (Limit Equation)
Assume τ does not vanish, (M, g) have no conformal Killing vectors,
and σ 6= 0 if Y(g) ≥ 0. Then at least one of the following is true:

1 The system (13)–(14) admits a solution (φ,W ) with φ > 0.

2 For some α0 ∈ (0, 1] there exists a non-trivial solution W of:

∆Lw = α0κ|Lw | dτ
τ

(limit equation) (16)

Important (surprising) implication: If (16) has no solution for any
α0 ∈ (0, 1], then there must be a solution (φ,W ) to (13)–(14) with φ > 0.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015



Overview of
Non-CMC
Analysis

Frameworks for
Conformal

Method

Michael Holst

Einstein
Equations
GR and LIGO

Einstein Equations

Conformal Method

Frameworks
and Results
1973–1995: CMC

1996–2007: Near-CMC

2008 Non-CMC Result

2009 Extensions

2010 Limit Equation

2013 IFT

2014 Drift System

Some of our
Group’s Results
Rough Metrics

Compact Case

AE Case

Multiplicity Results

References

Limit Equation Insights and Limitations

It is interesting that the proof of Theorem 15 relies on use of the
non-CMC analysis framework and theorems from [HNT09, Max09], but
for sub-critical exponent to avoid need for global barriers.

Limit equation seems to offer new way to find non-CMC solutions, and
has led to new insight into conformal method for non-CMC situations.

But, approach has some limitations for finding non-CMC solutions:

It appears difficult to apply the technique outside compact case.

The only known applications to date are near-CMC examples.

Some of the key Limit Equation papers are:

M. Dahl, R. Gicquaud, and E. Humbert. A limit equation
associated to the solvability of the vacuum Einstein constraint
equations using the conformal method. arXiv:1012.2188, 2014.

M. Dahl, R. Gicquaud, and E. Humbert. A non-existence result for
a generalization of the equations of the conformal method in
general relativity. arXiv:1207.5131, 2014.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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2013 Implicit Function Theorem Technique

Gicquaud and Ngo [GiNg14] study again the vacuum case:

−2κq∆gφ+ Rgφ = −κτ 2φq−1 + |σ + Lw |2φ−q−1, (17)

∆Lw = κφq dτ. (18)

They prove the following non-CMC result:

Theorem 16 (Non-CMC via IFT)
Assume (M, g) have no conformal Killing vectors, σ̃ 6= 0, and Y(g) > 0.
Then there exists η0 > 0 such that for all η ∈ (0, η0), there exists (φ,W )
solving (17)–(18) for σ = ησ̃.

This result appears to be the same type of general non-CMC result as
those contained in the 2008 and 2009 papers [HNT08, HNT09, Max09].
The conditions are basically the same:

1 Arbitrarily prescribed mean extrinsic curvature τ .

2 No conformal Killing fields.

3 Positive Yamabe class: Y(g) > 0.

4 Data σ “sufficiently small”.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Implicit Function Theorem Technique
What is remarkable about the Gicquaud-Ngo Theorem 16
from [GiNg14] is that their proof goes through the Implicit Function
Theorem, about τ = 0.

In particular, they first show: There exists ε > 0 such that the following
µ-deformed system admits a solution (φ̃, w̃) for any µ ∈ [0, ε):

−2κq∆gφ̃+ Rgφ̃ = −κτ 2µ2φ̃q−1 + |σ + Lw̃ |2φ̃−q−1, (19)

∆Lw̃ = κφ̃qµ dτ. (20)

The proof of this fact is through the Implicit Function Theorem.

They then show that (φ̃, w̃) solving (19)–(20) gives a solution
to (17)–(18) via the transformation:

φµ = µ
2

q−2 φ̃µ,

wµ = µ
q+2
q−2 w̃µ,

σµ = µ
q+2
q−2 σ̃µ,

η0 = ε
q+2
q−2 ,

with η0 playing its role in Theorem 16.
UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Conformal Method and Non-CMC: Bad News?
Does Gicquaud-Ngo Theorem 16 from [GiNg14], based on using
Implicit Function Theorem about τ = 0, mean that all “Far”-from-CMC
results requiring small σ are effectively near-CMC after all?

Effectively yes, BUT they are not EXACTLY the same results.

The smallness conditions on σ in the 2008–2009
papers [HNT08, HNT09, Max09] are based on building global
supersolutions from scaled solutions to Yamabe-type problems.

The Harnack constant for these scaled solutions, together with other
constants, give specific size limits on an Lr norm of σ. I.e., σ must be
“small enough”, but not infinitesimally small as in the IFT arguments.

However, the distinction between these two types of “small σ” results is
probably not important.

What is clear, is that the conformal method seems to have several
serious problems for Non-CMC:

Non-uniqueness for non-CMC as you move away from near-CMC.
No arbitrary τ existence results for anything but Y(g) > 0.
Small σ is (effectively) near-CMC after all.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Conformal Method and Non-CMC: Bad News?
Conformal method has several serious problems for Non-CMC:

Non-uniqueness for non-CMC as you move away from near-CMC.

No arbitrary τ existence results for anything but Y(g) > 0.

Small σ is (effectively) near-CMC after all.

An alternative to the conformal method has been developed over the
last several years in a sequence of papers:

D. Maxwell. The conformal method and the conformal
thin-sandwich method are the same. arXiv:1402.5585v2, 2014.

D. Maxwell. Conformal Parameterizations of Slices of Flat Kasner
Spacetimes arXiv:1404.7242v1, 2014.

D. Maxwell. Initial data in general relativity described by
expansion, conformal deformation and drift. arXiv:1407.1467,
2014.

These were based on insight gained from the multipicity result in:

D. Maxwell. A model problem for conformal parameterizations of
the Einstein constraint equations. arXiv:0909.5674, 2009.

David will tell us about some of these ideas later this week.
UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015



Overview of
Non-CMC
Analysis

Frameworks for
Conformal

Method

Michael Holst

Einstein
Equations
GR and LIGO

Einstein Equations

Conformal Method

Frameworks
and Results
1973–1995: CMC

1996–2007: Near-CMC

2008 Non-CMC Result

2009 Extensions

2010 Limit Equation

2013 IFT

2014 Drift System

Some of our
Group’s Results
Rough Metrics

Compact Case

AE Case

Multiplicity Results

References

Outline (Starting Part 3)

1 Einstein Evolution and Constraint Equations
General Relativity, LIGO, and Gravitational Wave Science
The Einstein Evolution and Constraint Equations
The Conformal Method(s) of 1944, 1973, 1974

2 Frameworks and Results for the Conformal Method (1973–2013)
The 1973–1995 CMC Results
The 1996–2007 Near-CMC Results
The 2008 Analysis Framework and the Non-CMC Result
The 2009 Non-CMC Extensions to Rough Metrics and Vacuum
The 2010 Limit Equation Technique
The 2013 Implicit Function Theorem Technique
The 2014 Drift System Alternative to Conformal Method

3 Some of our Group’s Results
Results for Rough Metrics
Compact with Boundary Case
Asymptotically Euclidean Case
Warning Signs: Multiplicity Results, Analytic Bifurcation Theory

4 References

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Rough Metrics
[HNT09] MH, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein

constraints on closed manifolds without near-CMC conditions, Comm.
Math. Phys. 288 (2009), no. 2, 547–613, Available as arXiv:0712.0798
[gr-qc].

[HT13] MH and G. Tsogtgerel, The Lichnerowicz equation on compact manifolds
with boundary, Class. Quantum Grav., 30 (2013), pp. 1–31. Available as
arXiv:1306.1801 [gr-qc].

[HMT14] MH, C. Meier, and G. Tsogtgerel, Non-CMC solutions of the Einstein
constraint equations on compact manifolds with apparent horizon
boundaries, Accepted for publication. Available as arXiv:1310.2302 [gr-qc].

[BH14] A. Behezadan and MH, Rough solutions of the Einstein constraint
equations on asymptotically flat manifolds without near-CMC conditions,
Preprint. Available as arXiv:1504.04661 [gr-qc].

Relevant to the study of the Einstein evolution equations is the existence of
solutions to the constraint equations for weak or rough background metrics hab .
Initial results were developed for the CMC case in [yCB04, Max05a, Max06].

Requires careful examination of multiplication properties of the spaces.

We developed Non-CMC rough solution results for closed manifolds in [HNT09],
for compact manifolds with boundary in [HT13, HMT14], and for AE manifolds
in [BH14].

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Main Result 1: Non-CMC W s,p weak solutions

The main results for rough non-CMC solutions on compact manifolds in [HNT09]
are contained in the following three theorems.

Theorem 17 (Non-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

admit no conformal Killing field and be in Y+(M), where p ∈ (1,∞) and
s ∈ (1 + 3

p ,∞) are given. Select q and e to satisfy:

1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

Assume that the data satisfies:

τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z otherwise, with z = 3q
3+max{0,2−e}q ,

σ ∈ W e−1,q , with ‖σ2‖∞ sufficiently small,

ρ ∈ W s−2,p ∩ L∞+ \ {0}, with ‖ρ‖∞ sufficiently small,

j ∈ W e−2,q , with ‖j‖e−2,q sufficiently small.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the constraints.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Main Result 2: Near-CMC W s,p weak solutions

Theorem 18 (Near-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

admit no conformal Killing field, where p ∈ (1,∞) and s ∈ (1 + 3
p ,∞) are

given. Select q, e and z to satisfy:

• 1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

• e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

• z = 3q
3+max{0,2−e}q .

Assume τ satisfies near-CMC condition (2) with z above, and data satisfies:

• τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z if e 6 2,

• σ ∈ W e−1,q ,

• ρ ∈ W s−2,p
+ ,

• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab in Y−(M); hab conformally equiv to metric w/ scalar curvature (−τ2);

(b) hab in Y0(M) or Y+(M); either ρ 6≡ 0 and τ 6≡ 0 or τ ∈ L∞ and infM σ2

suff. large.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the constraints.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Main Result 3: CMC W s,p weak solutions

Theorem 19 (CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

where p ∈ (1,∞) and s ∈ ( 3
p ,∞) ∩ [1,∞) are given. With d := s − 3

p , select q
and e to satisfy:

• 1
q ∈ (0, 1) ∩ [ 3−p

3p , 3+p
3p ] ∩ [ 1−d

3 , 3+sp
6p ),

• e ∈ [1,∞) ∩ [s − 1, s] ∩ [ 3
q + d − 1, 3

q + d ] ∩ ( 3
q + d

2 ,∞).

Assume τ = const (CMC) and that the data satisfies:

• σ ∈ W e−1,q ,

• ρ ∈ W s−2,p
+ ,

• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab is in Y−(M); τ 6= 0;

(b) hab is in Y0(M); ρ 6≡ 0;

(c) hab is in Y+(M); τ 6= 0; ρ 6≡ 0.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein
constraints.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Exponent conditions for the non-CMC results

Figure: Range of e and q in Main Results 1 and 2, with
d = s − 3

p > 1.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Exponent conditions for the CMC results

Figure: Range of e and q in Main Result 3. Recall that
d = s − 3

p > 0.
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Really Rough Metrics

[HM13] MH and C. Meier, Generalized solutions to semilinear elliptic PDE with
applications to the Lichnerowicz equation, Acta Appicandae Mathematicae,
130 (2014), pp. 163–203. Available as arXiv:1112.0351 [math.NA].

One of the difficulties associated with obtaining rough solutions to the
conformal formulation is that the spaces W s,p(M) are not closed under
multiplication unless s > d/p (where d is the spatial dimension).

This restriction is a by-product of a more general problem, which is that
there is no well-behaved definition of distributional multiplication that
allows for the multiplication of arbitrary distributions.

Limits spaces one considers when developing weak formulation of a
given elliptic partial differential equation, and places a restriction on
regularity of the specified data (gab, τ, σ, ρ, j) of the constraint equations.

In [HM13], we extend the work of Mitrovic-Pilipovic (2006) and
Pilipovic-Scarpalezos (2006) to solve problems similar to Hamiltonian
constraint with distributional coefficients in Colombeau algebras.

These generalized spaces allows one to circumvent the restrictions
associated with Sobolev coefficients and data, and thereby consider
problems with coefficients and data of much lower regularity.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Compact Manifolds with Boundary
[HT13] MH and G. Tsogtgerel, The Lichnerowicz equation on compact manifolds

with boundary, Class. Quantum Grav., 30 (2013), pp. 1–31. Available as
arXiv:1306.1801 [gr-qc].

[HMT14] MH, C. Meier, and G. Tsogtgerel, Non-CMC solutions of the Einstein
constraint equations on compact manifolds with apparent horizon
boundaries, Accepted for publication. Available as arXiv:1310.2302 [gr-qc].

Compact manifolds with boundary emerge when one eliminates
asymptotic ends or singularities from the manifold.

To follow closely [HT13], we change notation slightly and refer to spatial
metric as g and ĝ rather than h and ĥ.

To allow for a general discussion, assume the spatial dimension is
n > 3; later we restrict to n = 3.

Let M be a compact manifold with boundary.
Let φ be a positive scalar field on M.
Decompose extrinsic curvature as K̂ = Ŝ + τ ĝ.
Here τ = 1

n trĝK̂ is (averaged) trace, so Ŝ is the traceless part.
With q̄ = n

n−2 , conformal metric g and symmetric traceless S come via

ĝ = φ2q̄−2g, Ŝ = φ−2S. (21)

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Lichnerowicz, Compact with Boundary
Chosen powers give Lichnerowicz equation and momentum constraint:

− 4(n−1)
n−2 ∆φ+ Rφ+ n(n − 1)τ 2φ2q̄−1 − |S|2gφ−2q̄−1 = 0, (22)

divgS − (n − 1)φ2q̄dτ = 0, (23)

where ∆ ≡ ∆g is the Laplace-Beltrami operator with respect to the
metric g, and R ≡ scalg is the scalar curvature of g.
Interpret (22)–(23) as PDE for φ and (part of) traceless symmetric S.
Metric g is considered as given.
To rephrase, given φ and S fulfilling (22)–(23), ĝ and K̂ given by

ĝ = φ2q̄−2g, K̂ = φ−2S + φ2q̄−2τg,

satisfy the Einstein constraint system.

ĝ = physical metric
g = conformal metric (only specifies conformal class of ĝ, other info lost)

Assume now that traceless symmetric bilinear form S given.

Consider Lichnerowicz (22) on a compact manifold with boundary.

Boundaries emerge when one eliminates asymptotic ends or
singularities from the manifold.

Need to impose appropriate boundary conditions for φ.
UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Approximating Asymptotically Flat Manifolds

On asymptotically flat manifolds, one has [YP82]

φ = 1 + Ar 2−n + ε, with ε = O(r 1−n), and ∂rε = O(r−n), (24)

where A is multiple total energy, r is the flat-space radial coordinate.

Idea is: cut out asymptotically Euclidean end along the sphere with
large radius r and impose Dirichlet condition φ ≡ 1 at boundary.

Improvement via differentiating (24) with respect to r and eliminating A:

∂rφ+
n − 2

r
(φ− 1) = O(r−n). (25)

Equating right hand side to zero gives inhomogeneous Robin condition
known to give accurate values for total energy.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Approximating Black Hole Data

Main approach: excise region around singularities and solve in exterior.

Such are ”inner”-boundaries; again need boundary conditions.

In [YP82] they introduce

∂rφ+
n − 2

2a
φ = 0, for r = a. (26)

Means r = a is a minimal surface; under appropriate data conditions
minimal surface is a trapped surface.

Trapped surface important since implies existence of event horizon
outside surface.

Various trapped surface conditions more general than minimal surface.
in literature.

Make clear what we mean by a trapped surface.

Suppose all necessary regions (singularities, asymptotic ends) excised
from initial slice,

Assume boundary Σ := ∂M has finitely many components Σ1,Σ2, . . ..

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015



Overview of
Non-CMC
Analysis

Frameworks for
Conformal

Method

Michael Holst

Einstein
Equations
GR and LIGO

Einstein Equations

Conformal Method

Frameworks
and Results
1973–1995: CMC

1996–2007: Near-CMC

2008 Non-CMC Result

2009 Extensions

2010 Limit Equation

2013 IFT

2014 Drift System

Some of our
Group’s Results
Rough Metrics

Compact Case

AE Case

Multiplicity Results

References

Trapped Surfaces

Let ν̂ ∈ Γ(T Σ⊥) be outward pointing unit normal (wrt ĝ).

Expansion scalars corresponding to outgoing and ingoing future
directed null geodesics orthogonal to Σ are given by

θ̂± = ∓(n − 1)Ĥ + trĝK̂ − K̂ (ν̂, ν̂), (27)

where (n − 1)Ĥ = divĝ ν̂ is the mean extrinsic curvature of Σ.

Surface Σi is called trapped surface if θ̂± < 0 on Σi .
Called marginally trapped surface if θ̂± 6 0 on Σi .

In terms of the conformal quantities:

θ̂± = ∓(n − 1)φ−q̄( 2
n−2∂νφ+ Hφ) + (n − 1)τ − φ−2q̄S(ν, ν), (28)

where ν = φq̄−1ν̂ is the unit normal with respect to g, and ∂νφ is the
derivative of φ along ν.

The mean curvature H with respect to g is related to Ĥ by

Ĥ = φ−q̄( 2
n−2∂νφ+ Hφ). (29)

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Trapped Surfaces: Maxwell Approach

In [Max05b, Dai04], authors studied boundary conditions leading to
trapped surfaces in the asymptotically flat and constant mean curvature
(τ = const) setting.

Decay condition on K̂ gives automatically τ ≡ 0.

In [Max05b], boundary conditions obtained via setting θ̂+ ≡ 0.

More generally, if one specifies scaled expansion scalar θ+ := φq̄−eθ̂+

for some e ∈ R, and poses no restriction on τ , then the (inner)
boundary condition for the Lichnerowicz equation (22) can be given by

2(n−1)
n−2 ∂νφ+ (n − 1)Hφ− (n − 1)τφq̄ + S(ν, ν)φ−q̄ + θ+φ

e = 0. (30)

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Trapped Surfaces: Dain Approach

In [Dai04], boundary conditions obtained via specifying θ̂−.

Similarly to Maxwell case, if generalize approach so that θ− := φq̄−eθ̂−
is specified, then we get the (inner) boundary condition

2(n−1)
n−2 ∂νφ+ (n − 1)Hφ+ (n − 1)τφq̄ − S(ν, ν)φ−q̄ − θ−φe = 0. (31)

Note that in above , one of θ± remains unspecified, so in order to
guarantee that both θ± 6 0, one has to impose some conditions on the
data, e.g., on τ or on S.

Another option: rigidly specify both θ±; can eliminate S from (28) and
get boundary condition

4(n−1)
n−2 ∂νφ+ 2(n − 1)Hφ+ (θ+ − θ−)φe = 0. (32)

At the same time, eliminating the term involving ∂νφ from (28) we get a
boundary condition on S that reads as

2S(ν, ν) = 2(n − 1)τφ2q̄ − (θ+ + θ−)φe+q̄ . (33)
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Trapped Surfaces: A General Approach

We see something interesting: the Lichnerowicz equation couples to the
momentum constraint (23) through the boundary conditions.

Even in constant mean curvature setting (where τ ≡ const), constraint
equations (22)–(23) generally do not decouple.

The only reasonable way to decouple the constraints is to consider
τ ≡ 0 and e = −q̄.
Note that all boundary conditions considered above (except Dirichlet)
are of form:

∂νφ+ bHφ+ bθφe + bτφq̄ + bwφ
−q̄ = 0. (34)

Eg., in (30) and (31), one has bH = n−2
2 H, bθ = ± n−2

2(n−1)
θ±,

bτ = ∓ n−2
2 τ , and bw = ± n−2

2(n−1)
S(ν, ν).

Minimal surface condition (26) corresponds to the choice
bθ = bτ = bw = 0, and bH = n−2

2 H.

The outer Robin condition (25) is bH = (n − 2)H, bθ = −(n − 2)H with
e = 0, and bτ = bw = 0.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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The Setup: General BVP for Lichnerowicz

Here we suppose each boundary component Σi has either Dirichlet
condition φ ≡ 1 or the Robin condition (34) enforced.

In particular, we allow the situation where no Dirichlet condition is
imposed anywhere.

Also, to allow linear Robin condition (25) and a nonlinear condition like
(30) at same time, must allow exponent e in (34) to be only locally
constant.

Main tools used in paper are order-preserving maps iteration together
with maximum principles and some results from conformal geometry.

These techniques sensitive to signs of coefficients in (34).

Defocusing case (preferred signs): (e − 1)bθ > 0, bτ > 0, and bw 6 0.

Non-Defocusing case: Otherwise.

Results for defocusing case (terminology motivated by dispersive
equations) more or less complete (see below).
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Summary of Main Results in [HT13]

The main results and supporting tools appearing in [HT13] are:

Justification of Yamabe classification of rough metrics on compact
manifolds with boundary.

Basic result on conformal invariance of Lichnerowicz equation.

A uniqueness result for the Lichnerowicz equation.

An order-preserving maps theorem for manifolds with boundary.

Construction of upper and lower barriers that respect the trapped
surface conditions.

Combination of the results above to produce a fairly complete
existence and uniqueness theory for the defocusing case.

Combination of the results above to produce some partial results
for the non-defocusing case.

Some perturbation results (looking ahead to the asymptotically
Euclidean case).

All of the results are developed for rough (and smooth) metrics.
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Yamabe Classes: Rough/Compact/Boundary
Yamabe classification of rough metrics: The Yamabe problem for rough
metrics on compact manifolds with boundary is again still open; the
work [Esc92, Esc96] was for smooth metrics. However, as in the closed
case, one can still get the following result [HT13] which is all we need:

Theorem 20 (Yamabe Classification of Rough Metrics)
Let (M, g) be a smooth, compact, connected Riemannian manifold with
boundary, where we assume that the components of the metric g are
(locally) in W s,p, with sp > n and s > 1. Let the dimension of M be
n > 3. Then, the following are equivalent:

a) Yg > 0 (Yg = 0 or Yg < 0).

b) Yg(q, r , b) > 0 (resp. Yg(q, r , b) = 0 or Yg(q, r , b) < 0) for any
q ∈ [2, 2q̄), r ∈ [2, q̄ + 1) with q > r , and any b ∈ R.

c) There is a metric in [g] whose scalar curvature is continuous and
positive (resp. zero or negative), and boundary mean curvature is
continuous and has any given sign (resp. is identically zero, has
any given sign).

In particular, two conformally equivalent metrics cannot have scalar
curvatures with distinct signs.
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Conformal Invariance

Let M be smooth, compact, connected n-dimensional manifold with
boundary, equipped with a Riemannian metric g ∈ W s,p, n > 3,
p ∈ (1,∞), and that s ∈ ( n

p ,∞) ∩ [1,∞).

We consider following model for Lichnerowicz problem

F (φ) :=

 −∆φ+ n−2
4(n−1)

Rφ+ aφt

γN∂νφ+ n−2
2 HγNφ+ b(γNφ)e

γDφ− c

 = 0,

where t , e ∈ R constants, R ∈ W s−2,p(M) and H ∈ W s−1− 1
p ,p(Σ) are

scalar and mean curvatures of metric g, and other coefficients satisfy
a ∈ W s−2,p(M), b ∈ W s−1− 1

p ,p(ΣN), and c ∈ W s− 1
p ,p(ΣD).

Setting q̄ = n
n−2 , interested in transformation properties of F under

conformal change g̃ = θ2q̄−2g with factor θ ∈ W s,p(M) satisfying θ > 0.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Conformal Invariance
To this end, we consider

F̃ (ψ) :=

 −∆̃ψ + n−2
4(n−1)

R̃ψ + ãψt

γN∂ν̃ψ + n−2
2 H̃γNψ + b̃(γNψ)e

γDψ − c̃

 = 0,

where ∆̃ is Laplace-Beltrami operator associated to metric g̃, ν̃ is the
outer normal to Σ with respect to g̃, R̃ ∈ W s−2,p(M) and
H̃ ∈ W s−1− 1

p ,p(Σ) are respectively the scalar and mean curvatures of g̃,
and ã ∈ W s−2,p(M), b̃ ∈ W s−1− 1

p ,p(ΣN), and c̃ ∈ W s− 1
p ,p(ΣD).

The result we need in this direction is the following [HT13].

Lemma 21 (Conformal Invariance)
Let ã = θt+1−2q̄a, b̃ = θe−q̄b, and c̃ = θ−1c. Then we have

F̃ (ψ) = 0 ⇔ F (θψ) = 0,

F̃ (ψ) > 0 ⇔ F (θψ) > 0,

F̃ (ψ) 6 0 ⇔ F (θψ) 6 0.
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Uniqueness Results
The conformal invariance result implies the following uniqueness result
for the model Lichnerowicz problem [HT13].

Lemma 22 (Uniqueness 1)
Let the coefficients of the model Lichnerowicz problem satisfy
(t − 1)a > 0, (e − 1)b > 0, and c > 0. If the positive functions
θ, φ ∈ W s,p(M) are distinct solutions of the constraint, i.e.,
F (θ) = F (φ) = 0, and θ 6= φ, then (t − 1)a = 0, (e − 1)b = 0, ΣD = ∅,
and the ratio θ/φ is constant. If in addition, t 6= 1, then Yg = 0.

The following theorem essentially says that in order to have multiple
positive solutions the Lichnerowicz problem must be a linear pure Robin
boundary value problem on a conformally flat manifold [HT13].

Theorem 23 (Uniqueness 2)
Let the coefficients of the Lichnerowicz problem satisfy aτ > 0, aw > 0,
(e − 1)bθ > 0, bτ > 0, bw 6 0, and φD > 0. Let the positive functions
θ, φ ∈ W s,p(M) be solutions of the Lichnerowicz problem, with θ 6= φ.
Then aτ = aw = 0, (e − 1)bθ = bτ = bw = 0, ΣD = ∅, the ratio θ/φ is
constant, and Yg = 0.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Order-Preserving Maps Theorem

Let us write our problem in the form:

F (φ) :=

 −∆φ+ f (φ)
γN∂νφ+ h(φ)
γDφ− φD

 = 0.

Say ψ is super-solution if F (ψ) > 0, and sub-solution if F (ψ) 6 0,
component-wise.

The following theorem from [HT13] extends the standard argument
used for closed manifolds (cf. [Ise95, Max05a]) to manifolds with
boundary; note that the required sub- and super-solutions need only
satisfy inequalities in both the interior and on the boundary.

Theorem 24 (Order-Preserving Maps w/ Boundaries)
Suppose that the signs of the coefficients aτ , aw , bθ, bτ , bw , and
bH − n−2

2 H are locally constant, and let φD > 0. Let φ−, φ+ ∈ W s,p(M)
be respectively sub- and super-solutions satisfying 0 < φ− 6 φ+. Then
there exists a positive solution φ ∈ [φ−, φ+]s,p to the Lichnerowicz
problem.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Existence Results - Defocusing Case

We start with metrics with nonnegative Yamabe invariant. In the
following theorem from [HT13], the symbol ∨ denotes the logical
disjunction (or logical OR).

Theorem 25 (Existence - Defocusing and Yg > 0)

Let Yg > 0. Let the coefficients of the Lichnerowicz problem satisfy
aτ > 0, aw > 0, bH > n−2

2 H, (e − 1)bθ > 0 with e 6= 1, bτ > 0, bw 6 0,
and φD > 0. Then there exists a positive solution φ ∈ W s,p(M) of the
Lichnerowicz problem if and only if one of the following conditions holds:

a) ΣD 6= ∅;

b) ΣD = ∅, bθ = 0,
(
Yg > 0 ∨ aτ 6= 0 ∨ bH 6= n−2

2 H ∨ bτ 6= 0
)
, and

(aw 6= 0 ∨ bw 6= 0);

c) ΣD = ∅, bθ 6= 0, bθ > 0, and (aw 6= 0 ∨ bw 6= 0);

d) ΣD = ∅, bθ 6= 0, bθ 6 0, and(
Yg > 0 ∨ aτ 6= 0 ∨ bH 6= n−2

2 H ∨ bτ 6= 0
)
;

e) ΣD = ∅, bθ = bτ = bw = 0, bH = n−2
2 H, aτ = aw = 0, and Yg = 0.
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Existence Results - Defocusing Case

The next theorem from [HT13] treats metrics with negative Yamabe
invariant, and reduces the Lichnerowicz problem into a prescribed
scalar curvature problem.

Theorem 26 (Existence - Defocusing and Yg < 0)

Let Yg < 0. Let the coefficients of the Lichnerowicz problem satisfy
aτ > 0, aw > 0, bH 6 n−2

2 H, (e − 1)bθ > 0 with e 6= 1, bτ > 0, bw 6 0,
and φD > 0. Then there exists a positive solution φ ∈ W s,p(M) of the
Lichnerowicz problem if and only if there exists a positive solution
u ∈ W s,p(M) to the following problem

−∆u + aRu + aτu2q̄−1 = 0,

γN∂νu + bHu + bτuq̄ + b+
θ ue = 0,

γDu = 1,

(35)

where b+
θ = max{0, bθ}.

There are also partial results in [HT13] for the non-defocusing case, but
will not be outlined in this talk.
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Non-CMC case: Main Results in [HMT14]

What about the non-CMC case?

In fact, even the CMC case was not yet discussed; this is because the
CMC assumption does not actually decouple the constraints due to the
boundary coupling, and we have only solved the Lichnerowicz equation.

The extension of the results in [HT13] to the non-CMC (far, near, and
also CMC itself) is considered in [HMT14].

Some of the main results appearing in [HMT14] are:

Number of necessary supporting results for momentum constraint
that were not needed for pure Lichnerowicz case in [HT13].

Construction of upper and lower barriers that respect trapped
surface conditions in coupled setting (delicate boundary coupling).

Combination of Schauder argument from [HNT09] with results for
Lichnerowicz equation from [HT13] to give existence results for
near-CMC and far-CMC data, analogous to known results for
closed manifolds.

CMC case comes as (still coupled) special case of near-CMC
result.
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Non-CMC case: The Setup
Assume compact domainM has boundary Σ = ∂M = ΣI ∪ ΣE , where
boundary segments ΣI and ΣE decomposed further into finite segments:

ΣI =
M⋃

i=1

Σi , ΣE =
N⋃

i=M+1

Σi , (M < N), Σi ∩ Σj = ∅ if i 6= j. (36)

We consider the following system:

Lφ+ aRφ+ aτφ5 − awφ
7 − aρφ−3 = 0, (37)

Lw + bτφ6 + bj = 0, (38)

where L, L, aR , aτ , aw , aρ, bτ , bj as before, subject to boundary conditions:

∂νφ+
1
2

Hφ+

(
1
2
τ −

1
4
θ−

)
φ3 −

1
4

S(ν, ν)φ−3 = 0, on ΣI , (39)

(Lw)abνb = V a, on ΣI , (40)

∂νφ+ cφ = g, on ΣE , (41)

(Lw)abνb + Ca
b wb = 0, on ΣE , (42)

where S, H, θ− are traceless symmeric tensor, mean extrinsic boundary
curvature, and incoming null geodesic expansion factor. In (39)-(42) we assume:

c > 0, g > 0 and g = δ(c +O(R−3)), δ > 0, (43)

∃α > 0 such that
∫
∂M

CabV aV b > α|V |L2(∂M), ∀V ∈ L2.
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Non-CMC case: Main Results in [HMT14]

Theorem 27 (Near-CMC and CMC W s,p Solutions)
Let (M, hab) be a 3-dimensional, compact Riemannian manifold with boundary satisfying (36). Let
hab ∈ W s,p(T 0

2M), with p ∈ (1,∞), s ∈ (1 + 3
p ,∞) given. With d = s − 3

p , select q and e so:

• 1
q ∈ (0, 1) ∩ [ 3−p

3p , 3+p
3p ] ∩ [ 1−d

3 , 3+sp
6p ),

• e ∈ [1,∞) ∩ [s − 1, s] ∩ [ 3
q + d − 1, 3

q + d ].

Let (43) hold and assume the data satisfies:

• θ− ∈ W
s−1− 1

p ,p(ΣI ), c, g ∈ W
s−1− 1

p ,p(ΣE ), Ca
b ∈ W

e−1− 1
q ,q (T 1

1 ΣE ),

• V ∈ W e−1,q , V aνa = (2τ + |θ−|/2)B6 − σ(ν, ν),

• τ ∈ W s−1,p if e > 2, and τ ∈ W 1,z ∩ L∞ otherwise, with z = 3p
3+max{0,2−s}p ,

• (4τ∨ + |θ|∨) > 0 on ΣI ,

• σ ∈ W e−1,q , ρ ∈ W s−2,p
+ , j ∈ W e−2,q .

In addition, assume a∨τ > θk1 (the near-CMC condition), where θk1 = 2C2(‖bτ‖z )2, with C is a positive
constant. If at least one of the following hold:

(a) ρ∨ > 0,

(b) a∨σ is sufficiently large,

then there exists a solution φ ∈ W s,p with φ > 0 and w ∈ W e,q to (37)–(42). Moreover, with an
additional smallness assumption on τ on ΣI , the marginally trapped surface boundary condition is satisfied.

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015



Overview of
Non-CMC
Analysis

Frameworks for
Conformal

Method

Michael Holst

Einstein
Equations
GR and LIGO

Einstein Equations

Conformal Method

Frameworks
and Results
1973–1995: CMC

1996–2007: Near-CMC

2008 Non-CMC Result

2009 Extensions

2010 Limit Equation

2013 IFT

2014 Drift System

Some of our
Group’s Results
Rough Metrics

Compact Case

AE Case

Multiplicity Results

References

Non-CMC case: Main Results in [HMT14]

Theorem 28 (Non-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional, compact Riemannian manifold with boundary satisfying (36). Let
hab ∈ W s,p(T 0

2M) and be in Y+, p ∈ (1,∞), s ∈ (1 + 3
p ,∞) given. With d = s − 3

p , select q and e
to satisfy:

• 1
q ∈ (0, 1) ∩ [ 3−p

3p , 3+p
3p ] ∩ [ 1−d

3 , 3+sp
6p ),

• e ∈ [1,∞) ∩ [s − 1, s] ∩ [ 3
q + d − 1, 3

q + d ].

Let (43) hold and assume the data satisfies:

• θ− ∈ W
s−1− 1

p ,p(ΣI ) ∩ L∞(ΣI ), c, g ∈ W
s−1− 1

p ,p(ΣE ), Ca
b ∈ W

e−1− 1
q ,q (T 1

1 ΣE ),

• V ∈ W e−1,q , V aνa = (2τ + |θ−|/2)B6 − σ(ν, ν),

• τ ∈ W s−1,p if s > 2, and τ ∈ W 1,z ∩ L∞ otherwise, with z = 3p
3+max{0,2−s}p ,

• (4τ∨ + |θ|∨) > 0 on ΣI ,

• σ ∈ W e−1,q , ρ ∈ W s−2,p
+ ∩ L∞\{0}, j ∈ W e−2,q , sufficiently small.

Additionally assume that at least one of the following hold:

(a) δ > 0 is sufficiently small in (43);

(b) a∨R > 0 is sufficiently large;
(c) ‖θ−‖∞ is sufficiently small, and Dτ is sufficiently small.

Then:

Case (a): The function B can be chosen so the marginally trapped surface condition is satisfied, and
subsequently there exists a solution φ ∈ W s,p with φ > 0 and w ∈ W e,q to equations (37)–(42).

Cases (b) and (c): There exists a solution φ ∈ W s,p with φ > 0 and w ∈ W e,q to (37)–(42). With an
additional smallness assumption on τ on ΣI , the marginally trapped surface condition may be satisfied.
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Asymptotically Euclidean Case

[DIM14] J. Dilts, J. Isenberg, R. Mazzeo, and C. Meier. Non-cmc solutions of the
Einstein constraint equations on asymptotically euclidean manifolds. 2014
Class. Quantum Grav. 31 (2014), 065001.

[HMa14] MH and C. Meier, Non-CMC solutions of the Einstein constraint equations
on asymptotically Euclidean manifolds with apparent horizon boundaries,
Class. Quantum Grav., 32 (2014), No. 2, pp. 1-25. Available as
arXiv:1403.4549 [gr-qc].

[BH14] A. Behezadan and MH, Rough solutions of the Einstein constraint
equations on asymptotically flat manifolds without near-CMC conditions,
Preprint. Available as arXiv:1504.04661 [gr-qc].

The most complete mathematical model of general relativity involves
the evolution and constraint equations on open, asymptotically
Euclidean manifolds, with black hole interior boundary conditions.

Existence results analogues to those for closed manifolds have been
known since shortly after the closed results developed.

In [HMa14], we develop non-CMC existence results for asymptotically
Euclidean manifolds with black hole interior boundaries.

In [BH14], we extend this work to rough metrics, in some sense
completing part of the research program begun in 2004/2005.
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AE Case: Main Theorems (Smooth metric)

Theorem 29 (Non-CMC)
Suppose that (M, g) is asymptotically Euclidean of class W 2,p

γ with p > n and
2− n < γ < 0. Assume that 2− n < δ < γ/2, and the data satisfies:

• g ∈ Y+,

• τ ∈ W 1,p
δ−1,

• σ ∈ W 1,2p
δ−1 with ‖σ‖L∞

δ−1
sufficiently small,

• ρ ∈ L∞γ−2 with ‖ρ‖L∞
δ−2

sufficiently small,

• J ∈ Lp
δ−2 with ‖J‖Lp

δ−2
sufficiently small,

• θ− ∈ W 1− 1
p ,p(Σ), θ− < 0,

• V ∈ W 1,p , V |Σ =
(
((n − 1)τ + |θ−|/2)ψN − σ(ν, ν)

)
ν,

• ((n − 1)τ + |θ−|/2) > 0 and ‖(n − 1)τ + |θ−|/2‖
W

1− 1
p ,p(Σ)

sufficiently

small.

Then on each end Ei there exists an interval Ii ⊂ (0,∞) such that if Ai ∈ Ii are
freely specified constants and ω is the associated harmonic function, there exists
a solution (φ,W ) to the conformal equations with boundary conditions (39)–(40)
such that φ− ω ∈ W 2,p

γ and W ∈ W 2,p
δ . Moreover, the function ψ can be chosen

so that (φ,W ) satisfies the marginally trapped surface boundary conditions.
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AE Case: Main Theorems (Smooth metric)

Theorem 30 (Near-CMC with bounded R and H)
Suppose that (M, g) is asymptotically Euclidean of class W 2,p

γ with p > n and
2− n < γ < 0. Assume that 2− n < δ < γ/2, and the data satisfies:

• ‖∇τ‖Lp
δ−2

is sufficiently small,

• σ ∈ W 1,2p
γ−1,

• ρ ∈ Lp
γ−2,

• J ∈ Lpδ−2 ,

• θ− ∈ W 1− 1
p ,p(Σ), θ− < 0,

• bV ∈ W 1,p , V |Σ =
(
((n − 1)τ + |θ−|/2)ψN − σ(ν, ν)

)
ν,

• (2(n − 1)τ + |θ−|) > 0 is sufficiently small on Σ.

Let Ai ∈ [1,∞) be freely specified constants on each end Ei and let ω be the
associated harmonic function. Then if

−cnR 6 bnτ2 on {x ∈M : R(x) < 0},
−H 6 (τ + |θ−|/(n − 1)) on {x ∈ Σ : H(x) < 0},

there exists a solution (φ,W ) to the conformal equations with boundary
conditions (39)-(40) such that φ− ω ∈ W 2,p

γ and W ∈ W 2,p
δ . Moreover, the

function ψ can be chosen so that (φ,W ) satisfies the marginally trapped surface
boundary conditions.
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AE Case: Main Theorems (Smooth metric)

Theorem 31 (Near-CMC with g ∈ Y+)
Suppose that (M, g) is asymptotically Euclidean of class W 2,p

γ with p > n and
2− n < γ < 0. Assume that 2− n < δ < γ/2, and the data satisfies:

• g ∈ Y+,

• ‖τ‖
W 1,p
δ−1

is sufficiently small, and τ > 0 on Σ,

• σ ∈ W 1,2p
γ−1,

• ρ ∈ Lp
γ−2,

• ‖J‖Lp
δ−2

is sufficiently small,

• θ− = 0,

• V ∈ W 1,p , V |Σ =
(
((n − 1)τ)φN − σ(ν, ν)

)
ν.

Then if Ai ∈ (0,∞) are freely specified constants on each end Ei and ω is the
associated harmonic function, there exists a unique solution (φ,W ) to the
conformal equations with marginally trapped surface boundary conditions such
that φ− ω ∈ W 2,p

γ and W ∈ W 2,p
δ .

Note: The proof of this near-CMC result goes through the Implicit Function
Theorem, which subsequently gives both existence and uniqueness in this case.
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AE Case: Main Theorem (Rough metric)

Theorem 32 (Non-CMC Rough AE Solutions)
Let (M, h) be a 3-dimensional AE Riemannian manifold of class W s,p

δ where

p ∈ (1,∞), s ∈ (1 +
3
p
,∞) and −1 < δ < 0 are given. Suppose h admits no

nontrivial conformal Killing field and is in the positive Yamabe class. Let
β ∈ (−1, δ]. Select q and e to satisfy:

• 1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

• e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

Let q = p if e = s 6∈ N0. Moreover if s > 2, s 6∈ N0, assume e < s. Assume that
the data satisfies:

τ ∈ W e−1,q
β−1 if e ≥ 2 and τ ∈ W 1,z

β−1 otherwise, where z =
3q

3 + (2− e)q

σ ∈ W e−1,q
β−1 ,

J ∈ We−2,q
β−2 , ρ ∈ W s−2,p

β−2 ∩ L∞2β−2, ρ ≥ 0 (ρ can be identically zero).

If µ > 0 is chosen to be sufficiently small and if ‖σ‖L∞
β−1

, ‖ρ‖L∞2β−2
, and

‖J‖
We−2,q
β−2

are sufficiently small, then there exists φ = ψ + µ > 0, ψ ∈ W s,p
δ and

W ∈ We,q
β solving the constraints.
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Multiplicity Results

[HK11] MH and V. Kungurtsev, Numerical bifurcation analysis of conformal
formulations of the Einstein constraints, Phys. Rev. D, 84 (2011),
pp. 124038(1)–124038(8). Available as arXiv:1107.0262 [math.NA].

[HM14] MH and C. Meier, Non-uniqueness of solutions to the conformal
formulation, Accepted for publication. Available as arXiv:1210.2156 [gr-qc].

One of the features of the new non-CMC existence results
in [HNT08, HNT09] (and similar results) is lack of uniqueness.

In 2009, Maxwell explicitly demonstrated existence of multiple solutions
for a special symmetric model [Max09b], and now also [Max14b].

Folds in solution curves observed numerically by Pfeiffer, O’Murchadha
and others for non-standard formulations of the constraints; i.e., the
mechanism is different from Maxwell results.

The non-standard formulation giving rise to this behavior has un-scaled
matter sources:

Lφ+ aRφ+ aτφ5 − awφ
−7 − aρφ5 = 0, (44)

Lw + bb
τφ

6 + bb
j φ

10 = 0, (45)

where as before, Lφ = −∆φ and (Lw)a = −∇b(Lw)ab.
UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Multiplicity Results
We wanted to examine more carefully (both numerically and
mathematically) the folds that had been observed numerically in this
non-standard formulation using somewhat ad-hoc methods.

To this end, in [HK11], we applied pseudo-arclength numerical
continuation to numerically track the parameterized solution curve in the
problem previously examined by Pfeiffer and O’Murchadha, and
numerically identify a fold.

In [HM14], using tools from analytic bifurcation theory, we show the
linearization of the non-standard constraint system develops a
one-dimensional kernel in both the CMC and Non-CMC cases.

Through Liapunov-Schmidt reduction, we show solutions with unscaled
data are non-unique by determining an explicit solution curve, and
analyze its behavior in the neighborhood of a particular solution.

The technique involves the following λ-parameterization of the model:

Lφ+ aRφ+ λ2aτφ5 − awφ
−7 − e−λaρφ5 = 0, (46)

Lw + λbb
τφ

6 = 0, (47)

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Multiplicity Results

To explain the main results, define aσ = 1
8σ

2, and

G(φ, λ) = Lφ+ aRφ+ λ2aτφ5 − aσφ−7 − e−λaρφ5, (48)

F ((φ,w), λ) =

[
Lφ+ aRφ+ λ2aτφ5 − awφ

−7 − e−λaρφ5

Lw + λbb
τφ

6

]
. (49)

Theorem 33 (CMC: Critical Values)
Let DφG(φ, λ) be the Fréchet derivative of (48) with respect to φ. Then:

1 There exists a critical value of ρ = ρc and a constant φc such that
when ρ = ρc , G(φ, λ) = 0 has a solution if and only if λ ≥ 0.

2 Furthermore, dim ker(DφG(φc , 0))) = 1 and it is spanned by the
constant function φ = 1.

3 Moreover, we can determine explicit values of ρc and φc :

ρc =
R

3
2

24
√

3π|σ|
, φc =

(
R

24πρc

) 1
4

. (50)
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Multiplicity Results

Theorem 34 (CMC: Multiplicity)
Suppose τ is constant, so that our problem is G(φ, λ) = 0. Let ρ = ρc ,
with ρc as in Theorem 33. Then:

1 There exists a neighborhood of (φc , 0) such that all solutions to
G(φ, λ) = 0 in this neighborhood lie on a smooth solution curve
{φ(s), λ(s)} that has the form

φ(s) = φc + s + O(s2),

λ(s) =
1
2
λ̈(0)s2 + O(s3), (λ̈(0) 6= 0).

2 In particular, there exists a δ > 0 such that for all 0 < λ < δ there
exist at least two distinct solutions φ1,λ 6= φ2,λ to G(φ, λ) = 0.

Theorem 35 (Non-CMC: 1-dimensional nullspace)
Let DX F ((φ,w), λ) be the Fréchet derivative of (49) w.r.t. X = (φ,w).
Let ρc , φc be as in Thm 33. If ρ = ρc , then dim ker(DX F ((φc , 0), 0))) = 1
and ker(DX F ((φc , 0), 0))) is spanned by constant vector [1, 0]T .
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Theorem 36 (Non-CMC: Multiplicity)
Suppose τ ∈ C1,α(M) is non-constant and let F ((φ,w), λ) be defined
as in (49), so that our problem is: F ((φ,w), λ) = 0. Let ρc and φc be
defined as in Theorem 33. If ρ = ρc , then:

1 There exists a neighborhood B of ((φc ,w), 0) such that all
solutions to F ((φ,w), λ) = 0 in B lie on a smooth curve of the form

φ(s) = φc + s +
1
2
λ̈(0)u(x)s2 + O(s3),

w(s) =
1
2
λ̈(0)v(x)s2 + O(s3),

λ(s) =
1
2
λ̈(0)s2 + O(s3), (λ̈(0) 6= 0),

where u(x) ∈ C2,α(M), v(x) ∈ C2,α(TM) and v(x) 6= 0.

2 In particular, there exists a δ > 0 s.t. for all 0 < λ < δ there exist
elements (φ1,λ,w1,λ), (φ2,λ,w2,λ) ∈ C2,α(M)⊕ C2,α(TM) s.t.

F ((φi,λ,wi,λ), λ) = 0, for i ∈ {1, 2}, and (φ1,λ,w1,λ) 6= (φ2,λ,w2,λ).

UCSD Center for Computational Mathematics Fields Institute, May 11–12, 2015
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Thank You for Listening!

References may be found on the following slides...
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[yC-B58] Y. Choquet-Bruhat. Théorèm d’existénce en mécanique des fluides relativistes. Bull. Soc. Math.
France, 86:155–175, 1958.

Key Conformal Method Papers: 1971–1973(+)
[jY71] J. York. Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett.,

26(26):1656–1658, 1971.

[jY72] J. York. Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett.,
28(16):1082–1085, 1972.

[jY73] J. York. Conformally invariant orthogonal decomposition of symmetric tensor on Riemannian
manifolds and the initial-value problem of general relativity. J. Math. Phys., 14(4):456–464, 1973.

[jY99] J. York. Conformal “thin-sandwich” data for the initial-value problem of general relativity. Phys.
Rev. Lett., 82:1350–1353, 1999.

[PY03] H. Pfeiffer and J. York, Jr. Extrinsic curvature and the Einstein constraints. Phys. Rev. D,
67:044022, 2003.

Some Key CMC Papers: 1974–1995
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